Прямая линия. Основные понятия

Класс: 2

Цель урока:

  • сформировать понятие о параллельности 2-х прямых, рассмотреть первый признак параллельности прямых;
  • выработать умение применять признак при решении задач.

Задачи:

  1. Образовательные: повторение и закрепление изученного материала, формирование понятия о параллельности 2-х прямых, доказательство 1-го признака параллельности 2-х прямых.
  2. Воспитательные: воспитывать умение аккуратно вести записи в тетради и соблюдать правила построения чертежей.
  3. Развивающие задачи: развитие логического мышления, памяти, внимания.

Оборудование урока:

  • мультимедийный проектор;
  • экран, презентации;
  • чертёжные инструменты.

Ход урока

I. Организационный момент.

Приветствие, проверка готовности к уроку.

II. Подготовка к активной УПД.

Этап 1.

На первом уроке геометрии мы рассматривали взаимное расположение 2-х прямых на плоскости.

Вопрос. Сколько общих точек могут иметь две прямые?
Ответ. Две прямые могут иметь либо одну общую точку, либо не имеют не одной общей точки.

Вопрос. Как будут расположены относительно друг друга 2-е прямые, если они имеют одну общую точку?
Ответ. Если прямые имеют одну общую точку, то они пересекаются

Вопрос. Как расположены 2-е прямые относительно друг друга, если они не имеют общих точек?
Ответ. То в этом случае данные прямые не пересекаются.

Этап 2.

На прошлом уроке Вы получили задание сделать презентацию, где мы встречаемся с непересекающимися прямыми в нашей жизни и в природе. Сейчас мы посмотрим эти презентации и выберем из них лучшие. (В жюри вошли учащиеся, которым в силу низкого интеллекта сложно создать свои презентации.)

Просмотр презентаций, выполненных учащимися: «Параллельность прямых в природе и жизни», и выбор из них лучших.

III. Активная УПД (объяснение нового материала).

Этап 1.

Рисунок 1

Определение. Две прямые на плоскости, которые не пересекаются, называются параллельными.

На данной таблице изображены различные случаи расположения 2-х параллельных прямых на плоскости.

Рассмотрим, какие отрезки будут параллельными.

Рисунок 2

1) Если прямая a параллельна b, то и отрезки AB и CD параллельны.

2) Отрезок может быть параллелен прямой. Так отрезок MN параллелен прямой a.

Рисунок 3

3) Отрезок AB параллелен лучу h. Луч h параллелен лучу k.

4) Если прямая a перпендикулярна прямой c, и прямая b перпендикулярна прямой c, то прямые a и b параллельны.

Этап 2.

Углы, образованные двумя параллельными прямыми и секущей.

Рисунок 4

Две параллельные прямые пересекаются третьей прямой в двух точках. При этом образуются восемь углов, обозначенных на рисунке числами.

Некоторые пары этих углов имеют специальные названия (см. рисунок 4).

Существует три признака, параллельности двух прямых , связанных с этими углами. На этом уроке мы рассмотрим первый признак .

Этап 3.

Повторим материал, необходимый для доказательства этого признака.

Рисунок 5

Вопрос. Как называются углы, изображённые на рисунке 5?
Ответ. Углы AOC и COB называются смежными.

Вопрос. Какие углы называются смежными? Дайте определение.
Ответ. Два угла называются смежными, если у них одна сторона является общей, а две другие являются продолжениями друг друга.

Вопрос. Каким свойством обладают смежные углы?
Ответ. Смежные углы в сумме дают 180 градусов.
AOC + COB = 180°

Вопрос. Как называются углы 1 и 2?
Ответ. Углы 1 и 2 называются вертикальными.

Вопрос. Какими свойствами обладают вертикальные углы?
Ответ. Вертикальные углы равны между собой.

Этап 4.

Доказательство первого признака параллельности.

Теорема. Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.

Рисунок 6

Дано: а и b – прямые
AB – секущая
1 = 2
Доказать: a//b.

1-ый случай.

Рисунок 7

Если 1 и 2 прямые, то a перпендикулярен AB, и b перпендикулярен AB, то а//b.

2-ой случай.

Рисунок 8

Рассмотрим случай, когда 1 и 2 не прямые Разделим отрезок AB пополам точкой O.

Вопрос. Какими будут отрезки AO и OB по длине?
Ответ. Отрезки AO и OB равны по длине.

1) Из точки O проведём перпендикуляр к прямой а, ОН перпендикулярен a.

Вопрос. Каким будет угол 3?
Ответ. Угол 3 будет прямым.

2) От точки А на прямой b отложим циркулем отрезок АН 1 = ВН.

3) Проведём отрезок ОН 1 .

Вопрос. Какие треугольники образовались в результате доказательства?
Ответ.
Треугольник ОНВ и треугольник ОН 1 А.

Докажем, что они равны.

Вопрос. Какие углы равны по условию теоремы?
Ответ. Угол 1 равен углу 2.

Вопрос. Какие стороны равны по построению.
Ответ. АО = ОВ и АН 1 = ВН

Вопрос. По какому признаку равны треугольники?
Ответ. Треугольники равны по двум сторонам и углу между ними (первый признак равенства треугольников).

Вопрос. Каким свойством обладают равные треугольники?
Ответ. В равных треугольниках против равных сторон лежат равные углы.

Вопрос. Какие углы будут равны?
Ответ. 5 = 6, 3 = 4.

Вопрос. Как называются 5 и 6?
Ответ. Эти углы называются вертикальными.

Из этого следует, что точки: Н 1 , О, Н лежат на одной прямой.
Т.к. 3 – прямой, а 3 = 4, то 4 – прямой.

Вопрос. Как расположены прямые а и b по отношению к прямой НН 1 , если углы 3 и 4 прямые?
Ответ. Прямые а и b перпендикулярны HH 1 .

Вопрос. Что мы можем сказать о двух перпендикулярах к одной прямой?
Ответ. Два перпендикуляра одной прямой параллельны.

Итак, а//b. Теорема доказана.

Сейчас я повторю все доказательство сначала, а Вы внимательно меня послушаете постараетесь все понять запомнить.

IV. Закрепление нового материала.

Работа по группам с разным уровнем развития интеллекта, с последующей проверкой на экране и на доске. У доски работают 3 ученика (по одному из каждой группы).

№1 (для учащихся со сниженным уровнем интеллектуального развития).

Дано: а и b прямые
с – секущая
1 = 37°
7 = 143°
Доказать: а//b.

Решение.

7 = 6 (вертикальные) 6 = 143°
1 + 4 = 180° (смежные) 4 =180° – 37° = 143°
4 = 6 = 143°, а они накрест лежащие а//b 5 = 48°, 3 и 5 – накрест лежащие углы, они равны a//b.

Рисунок 11

V. Итог урока.

Итог урока проводится с использованием рисунков 1-8.

Производится оценка деятельности учащихся на уроке (каждый ученик получает соответствующий смайлик).

Домашнее задание: учить – стр. 52-53; решить №186 (б, в).

Страница 1 из 2

Вопрос 1. Докажите, что две прямые, параллельные третьей, параллельны.
Ответ. Теорема 4.1. Две прямые, параллельные третьей, параллельны.
Доказательство. Пусть прямые a и b параллельны прямой c. Допустим, что a и b не параллельны (рис. 69). Тогда они не пересекаются в некоторой точке C. Значит, через точку C проходят две прямые, параллельные прямой c. Но это невозможно, так как через точку, не лежащую на данной прямой, можно провести не более одной прямой, параллельной данной. Теорема доказана.

Вопрос 2. Объясните, какие углы называются внутренними односторонними. Какие углы называются внутренними накрест лежащими?
Ответ. Пары углов, которые образуются при пересечении прямых AB и CD секущей AC, имеют специальные названия.
Если точки B и D лежат в одной полуплоскости относительно прямой AC, то углы BAC и DCA называются внутренними односторонними (рис. 71, а).
Если точки B и D лежат в разных полуплоскостях относительно прямой AC, то углы BAC и DCA называются внутренними накрест лежащими (рис. 71, б).


Рис. 71

Вопрос 3. Докажите, что если внутренние накрест лежащие углы одной пары равны, то внутренние накрест лежащие углы другой пары тоже равны, а сумма внутренних односторонних углов каждой пары равна 180°.
Ответ. Секущая AC образует с прямыми AB и CD две пары внутренних односторонних и две пары внутренних накрест лежащих углов. Внутренние накрест лежащие углы одной пары, например угол 1 и угол 2, являются смежными внутренним накрест лежащим углам другой пары: угол 3 и угол 4 (рис. 72).


Рис. 72

Поэтому если внутренние накрест лежащие углы одной пары равны, то внутренние накрест лежащие углы другой пары тоже равны.
Пара внутренних накрест лежащих углов, например угол 1 и угол 2, и пара внутренних односторонних углов, например угол 2 и угол 3, имеют один угол общий – угол 2, а два других угла смежные: угол 1 и угол 3.
Поэтому если внутренние накрест лежащие углы равны, то сумма внутренних углов равна 180°. И обратно: если сумма внутренних накрест лежащих углов равна 180°, то внутренние накрест лежащие углы равны. Что и требовалось доказать.

Вопрос 4. Докажите признак параллельности прямых.
Ответ. Теорема 4.2 (признак параллельности прямых). Если внутренние накрест лежащие углы равны или сумма внутренних односторонних углов равна 180°, то прямые параллельны.
Доказательство. Пусть прямые a и b образуют с секущей AB равные внутренние накрест лежащие углы (рис. 73, а). Допустим, прямые a и b не параллельны, а значит, пересекаются в некоторой точке C (рис. 73, б).


Рис. 73

Секущая AB разбивает плоскость на две полуплоскости. В одной из них лежит точка C. Построим треугольник BAC 1 , равный треугольнику ABC, с вершиной C 1 в другой полуплоскости. По условию внутренние накрест лежащие углы при параллельных a, b и секущей AB равны. Так как соответствующие углы треугольников ABC и BAC 1 с вершинами A и B равны, то они совпадают с внутренними накрест лежащими углами. Значит, прямая AC 1 совпадает с прямой a, а прямая BC 1 совпадает с прямой b. Получается, что через точки C и C 1 проходят две различные прямые a и b. А это невозможно. Значит, прямые a и b параллельны.
Если у прямых a и b и секущей AB сумма внутренних односторонних углов равна 180°, то, как мы знаем, внутренние накрест лежащие углы равны. Значит, по доказанному выше, прямые a и b параллельны. Теорема доказана.

Вопрос 5. Объясните, какие углы называются соответственными. Докажите, что если внутренние накрест лежащие углы равны, то соответственные углы тоже равны, и наоборот.

Ответ. Если у пары внутренних накрест лежащих углов один угол заменить вертикальным ему, то получится пара углов, которые называются соответственными углами данных прямых с секущей. Что и требовалось объяснить.
Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: \(\angle\)1 = \(\angle\)2 и \(\angle\)2 = \(\angle\)3. По свойству транзитивности знака равенства следует, что \(\angle\)1 = \(\angle\)3. Аналогично доказывается и обратное утверждение.
Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.

Вопрос 6. Докажите, что через точку, не лежащую на данной прямой, можно провести параллельную ей прямую. Сколько прямых, параллельных данной, можно провести через точку, не лежащую на этой прямой?

Ответ. Задача (8). Даны прямая AB и точка C, не лежащая на этой прямой. Докажите, что через точку C можно провести прямую, параллельную прямой AB.
Решение. Прямая AC разбивает плоскость на две полуплоскости (рис. 75). Точка B лежит в одной из них. Отложим от полупрямой CA в другую полуплоскость угол ACD, равный углу CAB. Тогда прямые AB и CD будут параллельны. В самом деле, для этих прямых и секущей AC углы BAC и DCA внутренние накрест лежащие. А так как они равны, то прямые AB и CD параллельны. Что и требовалось доказать.
Сопоставляя утверждение задачи 8 и аксиомы IX (основного свойства параллельных прямых), приходим к важному выводу: через точку, не лежащую на данной прямой, можно провести параллельную ей прямую, и только одну.

Вопрос 7. Докажите, что если две прямые пересекаются третьей прямой, то внутренние накрест лежащие углы равны, а сумма внутренних односторонних углов равна 180°.

Ответ. Теорема 4.3 (обратная теореме 4.2). Если две параллельные прямые пересекаются третьей прямой, то внутренние накрест лежащие углы равны, а сумма внутренних односторонних углов равна 180°.
Доказательство. Пусть a и b – параллельные прямые и c – прямая, пересекающая их в точках A и B. Проведём через точку A прямую a 1 так, чтобы внутренние накрест лежащие углы, образованные секущей c с прямыми a 1 и b, были равны (рис. 76).
По признаку параллельности прямых прямые a 1 и b параллельны. А так как через точку A проходит только одна прямая, параллельная прямой b, то прямая a совпадает с прямой a 1 .
Значит, внутренние накрест лежащие углы, образованные секущей с
параллельными прямыми a и b, равны. Теорема доказана.

Вопрос 8. Докажите, что две прямые, перпендикулярные третьей, параллельны. Если прямая перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.
Ответ. Из теоремы 4.2 следует, что две прямые, перпендикулярные третьей, параллельны.
Предположим, что две какие-либо прямые перпендикулярны третьей прямой. Значит, эти прямые пересекаются с третьей прямой под углом, равным 90°.
Из свойства углов, образованных при пересечении параллельных прямых секущей, следует, что если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.

Вопрос 9. Докажите, что сумма углов треугольника равна 180°.

Ответ. Теорема 4.4. Сумма углов треугольника равна 180°.
Доказательство. Пусть ABC – данный треугольник. Проведём через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по по разные стороны от прямой BC (рис. 78).
Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и C равна углу ABD.
А сумма всех трёх углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD и секущей AB, то их сумма равна 180°. Теорема доказана.

Вопрос 10. Докажите, что у любого треугольника по крайней мере два угла острые.
Ответ. Действительно, допустим, что у треугольника только один острый угол или вообще нет острых углов. Тогда у этого треугольника есть два угла, каждый из которых не меньше 90°. Сумма этих двух углов уже не меньше 180°. А это невозможно, так как сумма всех углов треугольника равна 180°. Что и требовалось доказать.

В этой статье мы расскажем о параллельных прямых, дадим определения, обозначим признаки и условия параллельности. Для наглядности теоретического материала будем использовать иллюстрации и решение типовых примеров.

Определение 1

Параллельные прямые на плоскости – две прямые на плоскости, не имеющие общих точек.

Определение 2

Параллельные прямые в трехмерном пространстве – две прямые в трехмерном пространстве, лежащие в одной плоскости и не имеющие общих точек.

Необходимо обратить внимание, что для определения параллельных прямых в пространстве крайне важно уточнение «лежащие в одной плоскости»: две прямые в трехмерном пространстве, не имеющие общих точек и не лежащие в одной плоскости, являются не параллельными, а скрещивающимися.

Чтобы обозначить параллельность прямых, общепринято использовать символ ∥ . Т.е., если заданные прямые a и b параллельны, кратко записать это условие нужно так: a ‖ b . Словесно параллельность прямых обозначается следующим образом: прямые a и b параллельны, или прямая а параллельна прямой b , или прямая b параллельна прямой а.

Сформулируем утверждение, играющее важную роль в изучаемой теме.

Аксиома

Через точку, не принадлежащую заданной прямой проходит единственная прямая, параллельная заданной. Это утверждение невозможно доказать на базе известных аксиом планиметрии.

В случае, когда речь идет о пространстве, верна теорема:

Теорема 1

Через любую точку пространства, не принадлежащую заданной прямой, будет проходить единственная прямая, параллельная заданной.

Эту теорему просто доказать на базе вышеуказанной аксиомы (программа геометрии 10 - 11 классов).

Признак параллельности есть достаточное условие, при выполнении которого гарантирована параллельность прямых. Иначе говоря, выполнения этого условия достаточно, чтобы подтвердить факт параллельности.

В том числе, имеют место необходимые и достаточные условия параллельности прямых на плоскости и в пространстве. Поясним: необходимое – значит то условие, выполнение которого необходимо для параллельности прямых; если оно не выполнено – прямые не являются параллельными.

Резюмируя, необходимое и достаточное условие параллельности прямых – такое условие, соблюдение которого необходимо и достаточно, чтобы прямые были параллельны между собой. С одной стороны, это признак параллельности, с другой – свойство, присущее параллельным прямым.

Перед тем, как дать точную формулировку необходимого и достаточного условия, напомним еще несколько дополнительных понятий.

Определение 3

Секущая прямая – прямая, пересекающая каждую из двух заданных несовпадающих прямых.

Пересекая две прямые, секущая образует восемь неразвернутых углов. Чтобы сформулировать необходимое и достаточное условие, будем использовать такие типы углов, как накрест лежащие, соответственные и односторонние. Продемонстрируем их на иллюстрации:

Теорема 2

Если две прямые на плоскости пересекаются секущей, то для параллельности заданных прямых необходимо и достаточно, чтобы накрест лежащие углы были равными, либо были равными соответственные углы, либо сумма односторонних углов была равна 180 градусам.

Проиллюстрируем графически необходимое и достаточное условие параллельности прямых на плоскости:

Доказательство указанных условий присутствует в программе геометрии за 7 - 9 классы.

В общем, эти условия применимы и для трехмерного пространства при том, что две прямые и секущая принадлежат одной плоскости.

Укажем еще несколько теорем, часто используемых при доказательстве факта параллельности прямых.

Теорема 3

На плоскости две прямые, параллельные третьей, параллельны между собой. Этот признак доказывается на основе аксиомы параллельности, указанной выше.

Теорема 4

В трехмерном пространстве две прямые, параллельные третьей, параллельны между собой.

Доказательство признака изучается в программе геометрии 10 класса.

Дадим иллюстрацию указанных теорем:

Укажем еще одну пару теорем, являющихся доказательством параллельности прямых.

Теорема 5

На плоскости две прямые, перпендикулярные третьей, параллельны между собой.

Сформулируем аналогичное для трехмерного пространства.

Теорема 6

В трехмерном пространстве две прямые, перпендикулярные третьей, параллельны между собой.

Проиллюстрируем:

Все указанные выше теоремы, признаки и условия позволяют удобно доказать параллельность прямых методами геометрии. Т.е., чтобы привести доказательство параллельности прямых, можно показать, что равны соответственные углы, или продемонстрировать факт, что две заданные прямые перпендикулярны третьей и т.д. Но отметим, что зачастую для доказательства параллельности прямых на плоскости или в трехмерном пространстве удобнее использовать метод координат.

Параллельность прямых в прямоугольной системе координат

В заданной прямоугольной системе координат прямая определяется уравнением прямой на плоскости одного из возможных видов. Так и прямой линии, заданной в прямоугольной системе координат в трехмерном пространстве, соответствуют некоторые уравнения прямой в пространстве.

Запишем необходимые и достаточные условия параллельности прямых в прямоугольной системе координат в зависимости от типа уравнения, описывающего заданные прямые.

Начнем с условия параллельности прямых на плоскости. Оно базируется на определениях направляющего вектора прямой и нормального вектора прямой на плоскости.

Теорема 7

Чтобы на плоскости две несовпадающие прямые были параллельны, необходимо и достаточно, чтобы направляющие векторы заданных прямых были коллинеарными, или были коллинеарными нормальные векторы заданных прямых, или направляющий вектор одной прямой был перпендикулярен нормальному вектору другой прямой.

Становится очевидно, что условие параллельности прямых на плоскости базируется на условии коллинеарности векторов или условию перпендикулярности двух векторов. Т.е., если a → = (a x , a y) и b → = (b x , b y) являются направляющими векторами прямых a и b ;

и n b → = (n b x , n b y) являются нормальными векторами прямых a и b , то указанное выше необходимое и достаточное условие запишем так: a → = t · b → ⇔ a x = t · b x a y = t · b y или n a → = t · n b → ⇔ n a x = t · n b x n a y = t · n b y или a → , n b → = 0 ⇔ a x · n b x + a y · n b y = 0 , где t – некоторое действительное число. Координаты направляющих или прямых векторов определяются по заданным уравнениям прямых. Рассмотрим основные примеры.

  1. Прямая a в прямоугольной системе координат определяется общим уравнением прямой: A 1 x + B 1 y + C 1 = 0 ; прямая b - A 2 x + B 2 y + C 2 = 0 . Тогда нормальные векторы заданных прямых будут иметь координаты (А 1 , В 1) и (А 2 , В 2) соответственно. Условие параллельности запишем так:

A 1 = t · A 2 B 1 = t · B 2

  1. Прямая a описывается уравнением прямой с угловым коэффициентом вида y = k 1 x + b 1 . Прямая b - y = k 2 x + b 2 . Тогда нормальные векторы заданных прямых будут иметь координаты (k 1 , - 1) и (k 2 , - 1) соответственно, а условие параллельности запишем так:

k 1 = t · k 2 - 1 = t · (- 1) ⇔ k 1 = t · k 2 t = 1 ⇔ k 1 = k 2

Таким образом, если параллельные прямые на плоскости в прямоугольной системе координат задаются уравнениями с угловыми коэффициентами, то угловые коэффициенты заданных прямых будут равны. И верно обратное утверждение: если несовпадающие прямые на плоскости в прямоугольной системе координат определяются уравнениями прямой с одинаковыми угловыми коэффициентами, то эти заданные прямые параллельны.

  1. Прямые a и b в прямоугольной системе координат заданы каноническими уравнениями прямой на плоскости: x - x 1 a x = y - y 1 a y и x - x 2 b x = y - y 2 b y или параметрическими уравнениями прямой на плоскости: x = x 1 + λ · a x y = y 1 + λ · a y и x = x 2 + λ · b x y = y 2 + λ · b y .

Тогда направляющие векторы заданных прямых будут: a x , a y и b x , b y соответственно, а условие параллельности запишем так:

a x = t · b x a y = t · b y

Разберем примеры.

Пример 1

Заданы две прямые: 2 x - 3 y + 1 = 0 и x 1 2 + y 5 = 1 . Необходимо определить, параллельны ли они.

Решение

Запишем уравнение прямой в отрезках в виде общего уравнения:

x 1 2 + y 5 = 1 ⇔ 2 x + 1 5 y - 1 = 0

Мы видим, что n a → = (2 , - 3) - нормальный вектор прямой 2 x - 3 y + 1 = 0 , а n b → = 2 , 1 5 - нормальный вектор прямой x 1 2 + y 5 = 1 .

Полученные векторы не являются коллинеарными, т.к. не существует такого значения t , при котором будет верно равенство:

2 = t · 2 - 3 = t · 1 5 ⇔ t = 1 - 3 = t · 1 5 ⇔ t = 1 - 3 = 1 5

Таким образом, не выполняется необходимое и достаточное условие параллельности прямых на плоскости, а значит заданные прямые не параллельны.

Ответ: заданные прямые не параллельны.

Пример 2

Заданы прямые y = 2 x + 1 и x 1 = y - 4 2 . Параллельны ли они?

Решение

Преобразуем каноническое уравнение прямой x 1 = y - 4 2 к уравнению прямой с угловым коэффициентом:

x 1 = y - 4 2 ⇔ 1 · (y - 4) = 2 x ⇔ y = 2 x + 4

Мы видим, что уравнения прямых y = 2 x + 1 и y = 2 x + 4 не являются одинаковыми (если бы было иначе, прямые были бы совпадающими) и угловые коэффициенты прямых равны, а значит заданные прямые являются параллельными.

Попробуем решить задачу иначе. Сначала проверим, совпадают ли заданные прямые. Используем любую точку прямой y = 2 x + 1 , например, (0 , 1) , координаты этой точки не отвечают уравнению прямой x 1 = y - 4 2 , а значит прямые не совпадают.

Следующим шагом определим выполнение условия параллельности заданных прямых.

Нормальный вектор прямой y = 2 x + 1 это вектор n a → = (2 , - 1) , а направляющий вектором второй заданной прямой является b → = (1 , 2) . Скалярное произведение этих векторов равно нулю:

n a → , b → = 2 · 1 + (- 1) · 2 = 0

Таким образом, векторы перпендикулярны: это демонстрирует нам выполнение необходимого и достаточного условия параллельности исходных прямых. Т.е. заданные прямые параллельны.

Ответ: данные прямые параллельны.

Для доказательства параллельности прямых в прямоугольной системе координат трехмерного пространства используется следующее необходимое и достаточное условие.

Теорема 8

Чтобы две несовпадающие прямые в трехмерном пространстве были параллельны, необходимо и достаточно, чтобы направляюще векторы этих прямых были коллинеарными.

Т.е. при заданных уравнениях прямых в трехмерном пространстве ответ на вопрос: параллельны они или нет, находится при помощи определения координат направляющих векторов заданных прямых, а также проверки условия их коллинеарности. Иначе говоря, если a → = (a x , a y , a z) и b → = (b x , b y , b z) являются направляющими векторами прямых a и b соответственно, то для того, чтобы они были параллельны, необходимо существование такого действительного числа t , чтобы выполнялось равенство:

a → = t · b → ⇔ a x = t · b x a y = t · b y a z = t · b z

Пример 3

Заданы прямые x 1 = y - 2 0 = z + 1 - 3 и x = 2 + 2 λ y = 1 z = - 3 - 6 λ . Необходимо доказать параллельность этих прямых.

Решение

Условиями задачи заданы канонические уравнения одной прямой в пространстве и параметрические уравнения другой прямой в пространстве. Направляющие векторы a → и b → заданных прямых имеют координаты: (1 , 0 , - 3) и (2 , 0 , - 6) .

1 = t · 2 0 = t · 0 - 3 = t · - 6 ⇔ t = 1 2 , то a → = 1 2 · b → .

Следовательно, необходимое и достаточное условие параллельности прямых в пространстве выполнено.

Ответ: параллельность заданных прямых доказана.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Параллельность – очень полезное свойство в геометрии. В реальной жизни параллельные стороны позволяют создавать красивые, симметричные вещи, приятные любому глазу, поэтому геометрия всегда нуждалась в способах эту параллельность проверить. О признаках параллельных прямых мы и поговорим в этой статье.

Определение для параллельности

Выделим определения, которые необходимо знать для доказательства признаков параллельности двух прямых.

Прямые называют параллельными, если они не имеют точек пересечения. Кроме того, в решениях обычно параллельные прямые идут в связке с секущей линией.

Секущей прямой называется прямая, которая пересекает обе параллельные прямые. В этом случае образуются накрест лежащие, соответственные и односторонние углы. Накрест лежащими будут пары углов 1 и 4; 2 и 3; 8 и 6; 7 и 5. Соответственными будут 7 и 2; 1 и 6; 8 и 4; 3 и 5.

Односторонними 1 и 2; 7 и 6; 8 и 5; 3 и 4.

При правильном оформлении пишется: «Накрест лежащие углы при двум параллельных прямых а и b и секущей с», потому что для двух параллельных прямых может существовать бесконечное множество секущих, поэтому необходимо указывать, какую именно секущую, вы имеете в виду.

Также для доказательства понадобится теорема о внешнем угле треугольника, которая гласит, что внешний угол треугольника равен сумме двух углов треугольника несмежных с ним.

Признаки

Все признаки параллельных прямых завязаны на знание свойств углов и теорему о внешнем угле треугольника.

Признак 1

Две прямые параллельны, если накрест лежащие углы равны.

Рассмотрим две прямые а и b с секущей с. Накрест лежащие углы 1 и 4 равны. Предположим, что прямые не параллельны. Значит прямые пересекаются и должна быть точка пересечения М. Тогда образуется треугольник АВМ с внешним углом 1. Внешний угол должен быть равен сумме углов 4 и АВМ как несмежных с ним по теореме о внешнем угле в треугольнике. Но тогда получится, что угол 1 больше угла 4, а это противоречит условию задачи, значит, точки М не существует, прямые не пересекаются, то есть параллельны.

Рис. 1. Рисунок к доказательству.

Признак 2

Две прямые параллельны, если соответственные углы при секущей равны.

Рассмотрим две прямые а и b с секущей с. Соответственные углы 7 и 2 равны. Обратим внимание на угол 3. Он является вертикальным для угла 7. Значит, углы 7 и 3 равны. Значит, углы 3 и 2 также равны, так как <7=<2 и <7=<3. А угол 3 и угол 2 являются накрест лежащими. Следовательно, прямые параллельны, что и требовалось доказать.

Рис. 2. Рисунок к доказательству.

Признак 3

Две прямые параллельны, если сумма односторонних углов равна 180 градусам.

Рис. 3. Рисунок к доказательству.

Рассмотрим две прямые а и b с секущей с. Сумма односторонних углов 1 и 2 равна 180 градусов. Обратим внимание на углы 1 и 7. Они являются смежными. То есть:

$$<1+<7=180$$

$$<1+<2=180$$

Вычтем из первого выражения второе:

$$(<1+<7)-(<1+<2)=180-180$$

$$(<1+<7)-(<1+<2)=0$$

$$<1+<7-<1-<2=0$$

$$<7-<2=0$$

$<7=<2$ - а они являются соответственными. Значит, прямые параллельны.

Что мы узнали?

Мы в подробностях разобрали, какие углы получаются при рассечении параллельных прямых третьей линией, выделили и подробно расписали доказательство трех признаков параллельности прямых.

Тест по теме

Оценка статьи

Средняя оценка: 4.1 . Всего получено оценок: 220.

Видеоурок «Признаки параллельности двух прямых» содержит доказательство теорем, которые описывают признаки, означающие параллельность прямых. При этом в видео описывается 1) теорема о параллельности прямых, при которых секущей созданы равные углы, 2) признак, означающий параллельность двух прямых - по равным образованным соответственным углам, 3) признак, означающий параллельность двух прямых в случае, когда при их пересечении секущей односторонние углы в сумме составляют 180°. Задача данного видеоурока - ознакомить учеников с признаками, означающими параллельность двух прямых, знание которых необходимо для решения многих практических задач, наглядно представить доказательство данных теорем, формировать навыки в доказательстве геометрических утверждений.

Преимущества видеоурока связаны с тем, что при помощи анимации, голосового сопровождения, возможности выделения цветом, он обеспечивает высокую степень наглядности, может послужить заменой подачи стандартного блока нового учебного материала учителем.

Начинается видеоурок с выведения на экран названия. Перед описанием признаков параллельности прямых ученики знакомятся с понятием секущей. Дается определение секущей как прямой, которая пересекает другие прямые. На экране изображены две прямые a и b, которые пересекаются прямой с. Построенная прямая с выделена синим цветом, акцентируя внимание на том, что они является секущей данных прямых а и b. Для того чтобы рассматривать признаки параллельности прямых необходимо более детально ознакомиться с областью пересечения прямых. Секущая в точках пересечения с прямыми образует 8 углов ∠1, ∠2, ∠3, ∠4, ∠5, ∠6, ∠7, ∠8, анализируя соотношения которых можно вывести признаки параллельности данных прямых. Отмечается, что углы ∠3 и ∠5, а также ∠2 и ∠4 называются накрест лежащими. Дается подробное объяснение при помощи анимации расположения накрест лежащих углов как углов, которые лежат между параллельными прямыми, и примыкают к прямым, располагаясь накрест. Затем дается понятие односторонних углов, в число которых входят пары ∠4 и ∠5, а также ∠3 и ∠6. Также указываются пары соответственных углов, которых на построенном изображении 4 пары - ∠1-∠5, ∠4-∠8, ∠2-∠6, ∠3-∠7.

В следующей части видеоурока рассматриваются три признака параллельности любых двух прямых. На экран выводится первое описание. Теорема утверждает, что при равенстве накрест лежащих углов, образуемых секущей, данные прямые будут параллельны. Утверждение сопровождается рисунком, на котором изображены две прямые а и b и секущая АВ. Отмечается, что образуемые накрест лежащие углы ∠1 и ∠2 равны между собой. Данное утверждение требует доказательства.

Наиболее просто доказываемый частный случай - когда данные образуемые накрест лежащие углы являются прямыми. Это означает, что секущая является перпендикуляром к прямым, а по уже доказанной теореме в этом случае прямые а и b не будут пересекаться, то есть являются параллельными. Доказательство для данного частного случая описывается на примере изображения, построенного рядом с первым рисунком, выделяя важные детали доказательства при помощи анимации.

Для доказательства в общем случае необходимо проведение дополнительного перпендикуляра из середины отрезка АВ на прямую а. Далее на прямой b откладывается отрезок ВН 1 , равный отрезку АН. Из полученной при этом точки Н 1 проводится отрезок, соединяющий точки О и Н 1 . Далее рассматриваются два треугольника ΔОНА и ΔОВН 1 , равенство которых доказывается по первому признаку равенства двух треугольников. Стороны ОА и ОВ равны по построению, так как точка О отмечалась как середина отрезка АВ. Стороны НА и Н 1 В также равны по построению, так как мы откладывали отрезок Н 1 В, равный НА. А углы ∠1=∠2 по условию задачи. Так как образованные треугольники равны между собой, то и соответствующие оставшиеся пары углов и сторон также равны между собой. Из этого следует, что и отрезок ОН 1 является продолжением отрезка ОН, составляя один отрезок НН 1 . При этом отмечается, что так как построенный отрезок ОН - перпендикуляр к прямой а, то соответственно и отрезок НН 1 является перпендикулярным к прямым а и b. Данный факт означает, используя теорему о параллельности прямых, к которым построен один перпендикуляр, что данные прямые а и b являются параллельными.

Следующая теорема, требующая доказательства - признак равенства параллельных прямых по равенству соответственных углов, образованных при пересечении секущей. Утверждение указанной теоремы выведено на экран и может быть предложено под запись учениками. Доказательство начинается с построения на экране двух параллельных прямых а и b, к которым построена секущая с. Выделенная на рисунке синим цветом. Секущей образованы соответственные углы ∠1 и ∠2, которые по условию равны между собой. Также отмечаются смежные углы ∠3 и ∠4. ∠2 по отношению к углу ∠3 является вертикальным углом. А вертикальные углы всегда равны. К тому же углы ∠1 и ∠3 являются накрест лежащими между собой - их равенство (по уже доказанному утверждению) означает, что прямые а и b параллельны. Теорема доказана.

Последняя часть видеоурока посвящена доказательству утверждения о том, что если сумма односторонних углов, которые образованы при пересечении двух некоторых прямых секущей прямой, будет равняться 180°, в этом случае данные прямые будут параллельны между собой. Доказательство демонстрируется, используя рисунок, на котором изображены прямые а и b, пересекающиеся с секущей с. Образованные пересечением углы отмечены аналогично предыдущему доказательству. По условию, сумма углов ∠1 и ∠4 равна 180°. При этом известно, что сумма углов ∠3 и ∠4 равна 180°, так как они являются смежными. Это означает, что углы ∠1 и ∠3 равны между собой. Данный вывод дает право утверждать, что прямые а и b параллельны. Теорема доказана.

Видеоурок «Признаки параллельности двух прямых» может быть использован учителем в качестве самостоятельного блока, демонстрирующего доказательства названных теорем, заменяющего объяснение учителя или сопровождающего его. А подробное объяснение дает возможность использовать материал для самостоятельного изучения учениками и поможет в объяснении материала при дистанционном обучении.