Тайна мифотворчества и мышления: нейронные сети мозга. Как устроены нейронные сети, и могут ли они захватить человечество Для нейронных сетей мозга работает принцип

Ещё одно научное открытие вызвало мой интерес в контексте причин мифотворчества, которое вписывается в бинарную структуру мозга и мышления, вынуждающую человека мыслить на двух уровнях - левополушарном, рациональном, логическом и правополушарном, образно-символическом и мифологическом. И как может быть иначе, если мы мыслим всем телом?

Смотрим у matveychev_oleg в Материализация событий в Вашей жизни начинается на квантовом уровне

Доктор Джо Диспенза (Joe Dispenza) стал одним из первых, кто начал исследовать влияние сознания на реальность с научной точки зрения. Его теория взаимосвязи между материей и сознанием принесла ему мировую известность после выхода документального фильма «Мы знаем, что делает сигнал».

Ключевое открытие, сделанное Джо Диспензой, заключается в том, что мозг не отличает физические переживания от душевных. Грубо говоря, клетки «серого вещества» абсолютно не отличают реальное, т.е. материальное, от воображаемого, т.е. от мыслей!

Мало кто знает, что исследования доктора в области сознания и нейрофизиологии начались с трагического опыта. После того, как Джо Диспенза был сбит машиной, врачи предложили ему скрепить поврежденные позвонки с помощью импланта, который впоследствии мог привести к пожизненным болям. Только так, по мнению врачей, он смог бы снова ходить.

Но Диспенза решил бросить вывоз традиционной медицине и восстановить свое здоровье с помощью силы мысли. Всего через 9 месяцев терапии Диспенза снова мог ходить. Это и послужило толчком к исследованию возможностей сознания.

Первым шагом на этом пути стало общение с людьми, пережившими опыт «спонтанной ремиссии». Это спонтанное и невозможное с точки зрения врачей исцеление человека от тяжелого заболевания без применения традиционного лечения. В ходе опроса Диспенза выяснил, что все люди, прошедшие через подобный опыт, были убеждены в том, что мысль первична по отношению к материи и может исцелять любые заболевания.

Нейронные сети

Теория доктора Диспензы утверждает, что каждый раз, переживая какой-либо опыт, мы «активируем» огромное количество нейронов в нашем мозге, которые в свою очередь влияют на наше физическое состояние.

Именно феноменальная сила сознания, благодаря способности к концентрации, создает так называемые синаптические связи - связи между нейронами. Повторяющиеся переживания (ситуации, мысли, чувства) создают устойчивые нейронные связи, называемые нейронными сетями. Каждая сеть является, по сути, определенным воспоминанием, на основе которого наше тело в будущем реагирует на похожие объекты и ситуации.

Согласно Диспензе, все наше прошлое «записано» в нейросетях мозга, которые формируют то, как мы воспринимаем и ощущаем мир в целом и его конкретные объекты в частности. Таким образом, нам лишь кажется, что наши реакции спонтанны. На самом деле, большинство из них запрограммировано устойчивыми нейронными связями. Каждый объект (стимул) активирует ту или иную нейронную сеть, которая в свою очередь вызывает набор определенных химических реакций в организме.

Эти химические реакции заставляют нас действовать или чувствовать себя определенным образом - бежать или застывать на месте, радоваться или огорчаться, возбуждаться или впадать в апатию и т.д. Все наши эмоциональные реакции - не более чем результат химических процессов, обусловленных сложившимися нейросетями, и основываются они на прошлом опыте. Другими словами, в 99% случаев мы воспринимаем реальность не такой, какая она есть, а интерпретируем ее на основе готовых образов из прошлого.

Основное правило нейрофизиологии звучит так: нервы, которые используются вместе, соединяются. Это значит, что нейросети образуются в результате повторения и закрепления опыта. Если же опыт долгое время не воспроизводится, то нейросети распадаются. Таким образом, привычка образуется в результате регулярного «нажимания» кнопки одной и той же нейросети. Так формируются автоматические реакции и условные рефлексы - вы еще не успели подумать и осознать, что происходит, а ваше тело уже реагирует определенным образом.

Сила внимания

Только вдумайтесь: наш характер, наши привычки, наша личность являются всего лишь набором устойчивых нейросетей, которые мы в любой момент можем ослабить или укрепить благодаря осознанному восприятию действительности! Концентрируя внимание осознанно и выборочно на том, чего мы хотим достичь, мы создаем новые нейронные сети.

Раньше ученые считали, что мозг является статичным, но исследования нейрофизиологов показывают, что абсолютно каждый малейший опыт производит в нем тысячи и миллионы нейронных изменений, которые отражаются на организме в целом. В своей книге «Эволюция нашего мозга, наука изменять наше сознание» Джо Диспенза задает логичный вопрос: если мы будем с помощью нашего мышления вызывать в организме определенные негативные состояния, то не станет ли в итоге это аномальное состояние нормой?

Диспенза провел специальный эксперимент для подтверждения возможностей нашего сознания.

Люди из одной группы в течение часа ежедневно нажимали на пружинистый механизм одним и тем же пальцем. Люди из другой группы должны были только представлять, что нажимают. В результате пальцы людей из первой группы окрепли на 30%, а из второй - на 22%. Такое влияние чисто мысленной практики на физические параметры - результат работы нейронных сетей. Так Джо Диспенза доказал, что для мозга и нейронов нет никакой разницы между реальным и мысленным опытом. А значит, если мы уделяем внимание негативным мыслям, наш мозг воспринимает их как реальность и вызывает соответствующие изменения в теле. Например, болезнь, страх, депрессию, всплеск агрессии и т.д.

Откуда грабли?

Еще один вывод из исследований Диспензы касается наших эмоций. Устойчивые нейронные сети формируют неосознанные паттерны эмоционального поведения, т.е. склонность к тем или иным формам эмоционального реагирования. В свою очередь, это ведет к повторяющемуся опыту в жизни.

Мы наступаем на одни и те же грабли только потому, что не осознаем причины их появления! А причина проста - каждая эмоция «ощущается» вследствие выброса в тело определенного набора химических веществ, и наш организм просто становится в некотором роде «зависим» от этих химических сочетаний. Осознав эту зависимость именно как физиологическую зависимость от химических веществ, мы можем от нее избавиться.

Необходим только сознательный подход.

Сегодня посмотрела лекцию Джо Диспенза «Сломай привычку быть собой» и подумалось: «Таким ученым золотые памятники надо ставить…» Биохимик, нейрофизиолог, нейропсихолог, хиропрактик, отец троих детей (двое из которых по инициативе Диспензы родились под водой, хотя 23 года назад в США этот способ считался полным сумасшествием) и очень обаятельный в общении человек. Лекции читает с таким искрометным юмором, о нейрофизиологии говорит настолько простым и понятным языком — настоящий энтузиаст от науки, просвещающий обычных людей, щедро делясь своим 20-летним научным опытом.

В своих объяснениях он активно использует последние достижения квантовой физики и говорит об уже наступившем времени, когда людям сейчас мало просто узнать о чем-то, но теперь они обязаны применять свои знания на практике:

«Зачем ждать какого-то особого момента или начала нового года для того, чтобы начать кардинально менять свое мышление и жизнь к лучшему? Просто начинайте это делать прямо сейчас: перестаньте проявлять часто повторяющиеся ежедневные негативные моменты поведения, от которых хотите избавиться, например, скажите себе утром:»Сегодня я проживу день, никого не осуждая» или «Сегодня я не буду ныть и жаловаться на все подряд» или «Не буду сегодня раздражаться»….

Старайтесь делать что-то в другом порядке, например, если сначала умывались, а потом чистили зубы, сделайте наоборот. Или возьмите и простите кого-нибудь. Просто так. Ломайте привычные конструкции!!! И вы почувствуете необычные и очень приятные ощущения, вам понравится, уж не говоря о тех глобальных процессах в своем теле и сознании, которые вы этим запустите! Начните привыкать размышлять о себе и беседовать с собой, как с лучшим другом.

Изменение мышления приводит к глубоким изменениям и в физическом теле. Если человек взял и задумался, беспристрастно посмотрев на себя со стороны:

«Кто я?
Почему мне плохо?
Почему я живу так, как не хочу?
Что мне нужно в себе изменить?
Что именно мне мешает?
От чего я хочу избавиться?» и т.д. и почувствовал острое желание не реагировать, как прежде, или не делать чего-то, как прежде,- это значит, что он прошел через процесс «осознания».

Это внутренняя эволюция. В этот момент он совершил скачок. Соответственно личность начинает меняться, а новой личности нужно новое тело.

Так происходят спонтанные исцеления: с новым сознанием болезнь больше не может оставаться в теле, т.к. меняется вся биохимия организма (мы меняем мысли, а от этого меняется набор химических элементов, участвующих в процессах, наша внутренняя среда становится токсичной для болезни), и человек выздоравливает.

Зависимое поведение (т.е. аддикцию к чему угодно: от видеоигр до раздражительности) можно определить очень легко: это то, что вам трудно остановить, когда вы хотите.

Если не можете отлипнуть от компьютера и проверяете свою страницу в соцсети каждые 5 минут, или понимаете, например, что раздражительность мешает вашим отношениям, но не можете перестать раздражаться, — знайте, что у вас зависимость не только на ментальном уровне, но и на биохимическом (ваше тело требует вброса гормонов, отвечающих за данное состояние).

Научно доказано, что действие химических элементов длится период от 30 секунд до 2 минут, и если вы продолжаете испытывать то или иное состояние дольше, знайте, что все остальное время вы искусственно поддерживаете его в себе, мыслями провоцируя цикличное возбуждение нейросети и повторный выброс нежелательных гормонов, вызывающих негативные эмоции, т.е. вы сами поддерживаете в себе это состояние!

По большому счету, вы добровольно выбираете свое самочувствие. Лучший совет для таких ситуаций — научитесь переключать свое внимание на что-то другое: природа, спорт, просмотр комедии, да что угодно, способное отвлечь и переключить вас. Резкая перефокусировка внимания позволит ослабить и «потушить» действие гормонов, отвечающих на негативное состояние. Эта способность называется нейропластичностью.

И чем лучше вы разовьете в себе это качество, тем легче вам будет управлять своими реакциями, что, по цепочке, приведет к огромному множеству изменений в вашем восприятии внешнего мира и внутреннему состоянию. Данный процесс и называется эволюцией.

Потому что новые мысли приводят к новому выбору, новый выбор ведет к новому поведению, новое поведение ведет к новому опыту, новый опыт ведет к новым эмоциям, которые, вместе с новой информацией из окружающего мира, начинают менять ваши гены эпигенетически (т.е. вторично). А потом эти новые эмоции, в свою очередь, начинают вызывать новые мысли, и так вы развиваете самоуважение, уверенность в себе и т.д. Именно таким образом мы можем усовершенствовать себя и, соответственно, свою жизнь.

Депрессия — тоже яркий пример зависимости . Любое состояние зависимости говорит о биохимическом дисбалансе в теле, а также о дисбалансе в работе связи «сознание-тело»

Самая большая ошибка людей в том, что они ассоциируют свои эмоции и линии поведения со своей личностью: мы так и говорим «Я нервный», «Я слабовольный», «Я больной», «Я несчастный» и т.д. Они считают, что проявление определенных эмоций идентифицирует их личность, поэтому постоянно подсознательно стремятся повторять схему реагирования или состояние (например, физическую болезнь или депрессию), как бы подтверждая себе каждый раз, кто они такие. Даже если сами очень страдают при этом! Огромное заблуждение. Любое нежелательное состояние можно при желании убрать, а возможности каждого человека ограничены только его фантазией.

И когда хотите изменений в жизни, представьте четко, чего именно вы желаете, но не разрабатывайте в уме «жесткий план» того, КАК ИМЕННО это произойдет, для возможности «выбора» самого лучшего для вас варианта, который может оказаться совершенно неожиданным.

Достаточно внутренне расслабиться и попытаться порадоваться от души тому, что еще не произошло, но обязательно произойдет. Знаете почему? Потому что на квантовом уровне реальности это уже произошло, при условии, что вы четко представили и от души порадовались. Именно с квантового уровня начинается зарождение материализации событий.

Так начните действовать сначала там. Люди привыкли радоваться только тому, что «можно потрогать», что уже реализовалось. Но мы не привыкли доверять самим себе и своим способностям к СО-ТВОРЕНИЮ реальности, хотя занимаемся этим каждый день и, в основном, на негативной волне. Достаточно вспомнить, как часто реализуются наши опасения, хотя эти события ведь тоже сформированы нами, только без контроля… А вот когда вы выработаете в себе способность к контролю над мышлением и эмоциями, начнут происходить настоящие чудеса.

Поверьте, я могу привести тысячи прекрасных и воодушевляющих примеров. Знаете, когда кто-то улыбается и говорит, что что-то произойдет, а его спрашивают: «Откуда ты знаешь?», а он спокойно отвечает: «Просто знаю…». Это яркий пример контролируемой реализации событий… Уверен, что абсолютно каждый хоть раз испытывал это особое состояние.»

Вот так просто о сложном рассказывает Джо Диспенза. Всем горячо посоветую его книги, как только их переведут на русский и начнут продавать в России.

«Самой главной нашей привычкой должна стать привычка быть самими собой».

Joe Dispenza


И еще Диспенза советует: никогда не переставайте учиться. Лучше всего информация усваивается, когда человек удивлен. Старайтесь каждый день узнавать что-то новое — это развивает и тренирует ваш мозг, создавая новые нейронные связи, что в свою очередь, будет менять и развивать вашу способность к осознанному мышлению, которое поможет вам смоделировать вашу собственную счастливую и полноценную реальность.

Экология жизни. Наука и открытия: Человек освоил морские глубины и воздушные просторы, проник в тайны космоса и земных недр. Он научился противостоять многим болезням

Человек освоил морские глубины и воздушные просторы, проник в тайны космоса и земных недр. Он научился противостоять многим болезням и стал жить дольше. Он пытается манипулировать генами, «выращивать» органы для трансплантации и путем клонирования «творить» живых существ.

Но для него по-прежнему остается величайшей загадкой, как функционирует его собственный мозг, как с помощью обычных электрических импульсов и небольшого набора нейромедиаторов нервная система не только координирует работу миллиардов клеток организма, но и обеспечивает возможность познавать, мыслить, запоминать, испытывать широчайшую гамму эмоций.

На пути к постижению этих процессов человек должен, прежде всего, понять, как функционируют отдельные нервные клетки (нейроны).

Величайшая загадка - как функционирует мозг

Живые электросети

По приблизительным оценкам, в нервной системе человека более 100 млрд нейронов . Все структуры нервной клетки ориентированы на выполнение важнейшей для организма задачи – получение, переработка, проведение и передача информации, закодированной в виде электрических или химических сигналов (нервных импульсов).

Нейрон состоит из тела диаметром от 3 до 100 мкм, содержащего ядро, развитый белок-синтезирующий аппарат и другие органеллы, а также отростков: одного аксона, и нескольких, как правило, ветвящихся, дендритов. Длина аксонов обычно заметно превосходит размеры дентритов, в отдельных случаях достигая десятков сантиметров и даже метров.

Например, гигантский аксон кальмараимеет толщину около 1 мм и несколько метров в длину; экспериментаторы не преминули воспользоваться такой удобной моделью, и опыты именно с нейронами кальмаров послужили выяснению механизма передачи нервных импульсов.

Снаружи нервная клетка окружена оболочкой (цитолеммой), которая не только обеспечивает обмен веществ между клеткой и окружающей средой, но также способна проводить нервный импульс.

Дело в том, что между внутреннней поверхностью мембраны нейрона и внешней средой постоянно поддерживается разность электрических потенциалов. Это происходит благодаря работе так называемых «ионных насосов» – белковых комплексов, осуществляющих активный транспорт положительно заряженных ионов калия и натрия через мембрану.

Такой активный перенос, а также постоянно протекающая пассивная диффузия ионов через поры в мембране обуславливают в покое отрицательный относительно внешней среды заряд с внутренней стороны мембраны нейрона.

Если раздражение нейрона превышает определенную пороговую величину, то в точке стимуляции возникает серия химических и электрических изменений (активное поступление ионов натрия в нейрон и кратковременное изменение заряда с внутренней стороны мембраны с отрицательного на положительный), которые распространяются по всей нервной клетке.

В отличие от простого электрического разряда, который из-за сопротивления нейрона будет постепенно ослабевать и сумеет преодолеть лишь короткое расстояние, нервный импульс в процессе распространения постоянно восстанавливается .

Основными функциями нервной клетки являются:

  • восприятие внешних раздражений (рецепторная функция),
  • их переработка (интегративная функция),
  • передача нервных влияний на другие нейроны или различные рабочие органы (эффекторная функция).

По дендритам – инженеры назвали бы их «приемниками» – импульсы поступают в тело нервной клетки, а по аксону – «передатчику» – идут от ее тела к мышцам, железам или другим нейронам.

В зоне контакта

Аксон имеет тысячи ответвлений, которые тянутся к дендритам других нейронов. Зона функционального контакта аксонов и дендритов называется синапсом .

Чем больше синапсов на нервной клетке, тем больше воспринимается различных раздражений и, следовательно, шире сфера влияний на ее деятельность и возможность участия нервной клетки в разнообразных реакциях организма. На телах крупных мотонейронов спинного мозга может насчитываться до 20 тыс синапсов.

В синапсе происходит преобразование электрических сигналов в химические и обратно. Передача возбуждения осуществляется с помощью биологически активных веществ – нейромедиаторов (ацетилхолина, адреналина, некоторых аминокислот, нейропептидов и др.). О ни содержатся в особых пузырьках, находящихся в окончаниях аксонов – пресинаптической части.

Когда нервный импульс достигает пресинаптической части, происходит выброс нейромедиаторов в синаптическую щель, они связываются с рецепторами, расположенными на теле или отростках второго нейрона (постсинаптической части), что приводит к генерации электрического сигнала – постсинаптического потенциала.

Величина электрического сигнала прямо пропорциональна количеству нейромедиатора.

Одни синапсы вызывают деполяризацию нейрона, другие – гиперполяризацию; первые являются возбуждающими, вторые – тормозящими.

После прекращения выделения медиатора происходит удаление его остатков из синаптической щели и возвращение рецепторов постсинаптической мембраны в исходное состояние. Результат суммации сотен и тысяч возбуждающих и тормозных импульсов, одновременно стекающихся к нейрону, определяет, будет ли он в данный момент генерировать нервный импульс.

Нейрокомпьютеры

Попытка смоделировать принципы работы биологических нейронных сетей привела к созданию такого устройства переработки информации как нейрокомпьютер .

В отличие от цифровых систем, представляющих собой комбинации процессорных и запоминающих блоков, нейропроцессоры содержат память, распределенную в связях (своего рода синапсах) между очень простыми процессорами, которые формально могут быть названы нейронами.

Нейрокомпьютеры не программируют в традиционном смысле этого слова, а «обучают», настраивая эффективность всех «синаптических» связей между составляющими их «нейронами».

Основными сферами применения нейрокомпьютеров их разработчики видят:

  • распознавание визуальных и звуковых образов;
  • экономическое, финансовое, политическое прогнозирование;
  • управление в реальном времени производственными процессами, ракетами, самолетами;
  • оптимизация при конструировании технических устройств и т.д.

«Голова – предмет темный…»

Нейроны можно разбить на три большие группы:

  • рецепторные,
  • промежуточные,
  • эффекторные.

Рецепторные нейроны обеспечивают ввод в мозг сенсорной информации. Они трансформируют сигналы, поступающие на органы чувств (оптические сигналы в сетчатке глаза, акустические – в ушной улитке, обонятельные – в хеморецепторах носа и др.), в электрическую импульсацию своих аксонов.

Промежуточные нейроны осуществляют обработку информации, получаемой от рецепторов, и генерируют управляющие сигналы для эффекторов. Нейроны этой группы образуют центральную нервную систему (ЦНС).

Эффекторные нейроны передают приходящие на них сигналы исполнительным органам. Результат деятельности нервной системы – та или иная активность, в основе которой лежит сокращение или расслабление мышц либо секреция или прекращение секреции желез. Именно с работой мышц и желез связан любой способ нашего самовыражения.

Если принципы функционирования рецепторных и эффекторных нейронов более или менее понятны ученым, то промежуточный этап, на котором организм «переваривает» поступившую информацию и принимает решение о том, как на нее отреагировать, понятен лишь на уровне простейших рефлекторных дуг.

В большинстве же случаев нейрофизиологический механизм формирования тех или иных реакций остается загадкой. Не даром в научно-популярной литературе головной мозг человека часто сравнивают с «черным ящиком».

«…В вашей голове живут 30 млрд нейронов, хранящих ваши знания, навыки, накопленный жизненный опыт. После 25 лет размышлений данный факт кажется мне не менее поразительным, чем раньше. Тончайшая пленка, состоящая из нервных клеток, видит, чувствует, творит наше мировоззрение. Это просто невероятно! Наслаждение теплотой летнего дня и смелые мечты о будущем – все создается этими клетками… Ничего другого не существует: никакой магии, никакого специального соуса, только нейроны, исполняющие информационный танец,» – писал в своей книге «Об интеллекте» известнейший разработчик компьютеров, основатель Редвудского института нейрологии (США) Джефф Хокинс.

Уже более полувека тысячи ученых-нейрофизиологов во всем мире пытаются понять хореографию этого «информационного танца», однако на сегодня известны лишь его отдельные фигуры и па, не позволяющие создать универсальную теорию функционирования головного мозга.

Следует отметить, что многие работы в области нейрофизиологии посвящены так называемой «функциональной локализации» – выяснению того, какой нейрон, группа нейронов или целая область мозга активируется в тех или иных ситуациях.

На сегодня накоплен огромный массив информации о том, какие нейроны у человека, крысы, обезьяны избирательно активируются при наблюдении различных объектов, вдыхании феромонов, прослушивании музыки, разучивании стихотворений и т.д.

Правда, иногда подобные опыты кажутся несколько курьезными. Так, еще в 70-е годы прошлого века одним из исследователей в мозге у крысы были обнаружены «нейроны зеленого крокодильчика»: эти клетки активировались, когда бегущее по лабиринту животное среди прочих предметов натыкалось на уже знакомую ему игрушку маленького зеленого крокодильчика.

А другим ученым позднее в мозге у человека был локализован нейрон, «реагирующий» на фотографию президента США Била Клинтона.

Все эти данные подтверждают теорию о том, что нейроны в головном мозге специализированы , однако ни в коей мере не объясняют, почему и каким образом происходит эта специализация.

Лишь в общих чертах понятны ученым нейрофизиологические механизмы обучения и памяти. Предполагается, что в процессе запоминания информации происходит формирование новых функциональных контактов между нейронами коры головного мозга.

Иными словами, нейрофизиологическим «следом» памяти являются синапсы. Чем больше возникает новых синапсов, тем «богаче» память индивидуума. Типичная клетка в коре головного мозга образует несколько (до 10) тысяч синапсов. С учетом общего числа нейронов коры получается, что всего здесь могут сформироваться сотни миллиардов функциональных контактов!

Под влиянием каких-либо ощущений, мыслей или эмоций происходит припоминание – возбуждение отдельных нейронов активизирует весь ансамбль, ответственный за хранение той или иной информации.

В 2000 г шведскому фармакологу Арвиду Карлссону и американским нейробиологам Полу Грингарду и Эрику Кенделу была присуждена Нобелевская премия по физиологии и медицине за открытия, касающиеся «передачи сигналов в нервной системе».

Ученые продемонстрировали, что память большинства живых существ работает благодаря действию так называемых нейротрансмиттеров дофамина, норадреналина и серотонина , эффект которых в отличие от классических нейромедиаторов развивается не за миллисекунды, а за сотни миллисекунд, секунды и даже часы. Именно этим и обусловлено их длительное, модулирующее влияние на функции нервных клеток, их роль в управлении сложными состояниями нервной системы – воспоминаниями, эмоциями, настроениями.

Следует также отметить, что величина сигнала, генерируемого на постсинаптической мембране, может быть различной даже при одинаковой величине исходного сигнала, достигшего пресинаптической части. Эти различия определяет так называемая эффективность, или вес, синапса, который может изменяться в процессе функционирования межнейронного контакта.

По мнению многих исследователей, изменение эффективности синапсов также играет немаловажную роль в работе памяти. Возможно, часто используемая человеком информация хранится в нейронных сетях, связанных высокоэффективными синапсами, и поэтому быстро и легко «вспоминается». В то же время, синапсы, участвующие в хранении второстепенных, редко «извлекаемых» данных, по-видимому, характеризуются низкой эффективностью.

А все-таки они восстанавливаются!

Одна из наиболее волнующих с медицинской точки зрения проблем нейробиологии – возможность регенерации нервной ткани . Известно, что перерезанные или поврежденные волокна нейронов периферической нервной системы, окруженные неврилеммой (оболочкой из специализированных клеток), могут регенерировать, если тело клетки сохранилось в целости. Ниже места перерезки неврилемма сохраняется в виде трубчатой структуры, и та часть аксона, которая осталась связанной с телом клетки, растет по этой трубке, пока не достигнет нервного окончания. Таким образом восстанавливается функция поврежденного нейрона.

Аксоны в ЦНС не окружены неврилеммой и поэтому, по-видимому, не способны вновь прорастать к месту прежнего окончания.

В то же время, до недавнего времени нейрофизиологи считали, что в течение жизни человека новые нейроны в ЦНС не образуются.

«Нервные клетки не восстанавливаются!», – предостерегали нас ученые. Предполагалось, что поддержание нервной системы в «рабочем состоянии» даже при серьезных заболеваниях и травмах происходит благодаря ее исключительной пластичности: функции погибших нейронов берут на себя их оставшиеся в живых «коллеги», которые увеличиваются в размерах и формируют новые связи.

Высокую, но не беспредельную эффективность подобной компенсации можно проиллюстрировать на примере болезни Паркинсона, при которой происходит постепенное отмирание нейронов. Оказывается, пока в головном мозге не погибнет около 90% нейронов, клинические симптомы заболевания (дрожание конечностей, неустойчивая походка, слабоумие) не проявляются, то есть человек выглядит практически здоровым. Получается, что одна живая нервная клетка может функционально заменить девять погибших!

В настоящее время доказано, что в головном мозге взрослых млекопитающих образование новых нервных клеток (нейрогенез) все же происходит. Еще в 1965 г было показано, что новые нейроны регулярно появляются у взрослых крыс в гиппокампе – области мозга отвечающей за ранние фазы обучения и памяти.

Спустя 15 лет ученые показали, что в мозге птиц новые нервные клетки появляются на протяжении всей жизни. Однако исследования мозга взрослых приматов на предмет нейрогенеза не давали обнадеживающих результатов.

Лишь около 10 лет назад американские ученые разработали методику, которая доказала, что в мозге обезьян в течение всей жизнииз нейрональных стволовых клеток продуцируются новые нейроны. Исследователи вводили животным специальное вещество-метку (бромдиоксиуридин), которое включалось в ДНК только делящихся клеток.

Так было обнаружено, что новые клетки начинали размножаться в субвентрикулярной зоне и уже оттуда мигрировали в кору, где и созревали до взрослого состояния. Новые нейроны обнаруживались в зонах головного мозга, связанных с когнитивными функциями, и не возникали в зонах, реализующих более примитивный уровень анализа.

В связи с этим ученые предположили, что новые нейроны могут быть важны для процесса обучения и памяти .

В пользу данной гипотезы говорит также следующее: большой процент новых нейронов гибнет в первые недели после того, как они родились; однако в тех ситуациях, когда происходит постоянное обучение, доля выживших нейронов значительно выше, чем тогда, когда они «не востребованы» – когда животное лишено возможности образовывать новый опыт.

На сегодня установлены универсальные механизмы гибели нейронов при различных заболеваниях:

1) повышение уровня свободных радикалов и окислительное повреждение мембран нейронов;

2) нарушение деятельности митохондрий нейронов;

3) неблагоприятное действие избытка возбуждающих нейротрансмиттеров глутамата и аспартата, приводящее к гиперактивации специфических рецепторов, избыточному накоплению внутриклеточного кальция, развитию окислительного стресса и гибели нейрона (феномен эксайтотоксичности).

Исходя из этого, в качестве лекарственных средств – нейропротекторов в неврологии используют:

  • препараты с антиоксидантными свойствами (витамины Е и С, др.),
  • корректоры тканевого дыхания (коэнзим Q10, янтарная кислота, рибофлавини, др),
  • а также блокаторы рецепторов глутамата (мемантин, др.).

Примерно в то же время была подтверждена возможность появления новых нейронов из стволовых клеток в головном мозге взрослого человека: патологоанатомическое исследование пациентов, получавших при жизни бромдиоксиуридин с терапевтической целью, показало, что нейроны, содержащие данное вещество-метку, обнаруживаются практически во всех отделах мозга, включая кору больших полушарий.

Этот феномен всесторонне исследуется с целью лечения различных нейродегенеративных заболеваний, прежде всего болезней Альцгеймера и Паркинсона, ставших настоящим бичом для «стареющего» населения развитых стран.

В экспериментах для трансплантации используют как нейрональные стволовые клетки, которые и у эмбриона, и у взрослого человека располагаются вокруг желудочков головного мозга, так и эмбриональные стволовые клетки, способные превращаться практически в любые клетки организма.

К сожалению, на сегодняшний день врачи не могут разрешить основную проблему, связанную с пересадкой нейрональных стволовых клеток: их активное размножение в организме реципиента в 30-40% случаев приводит к образованию злокачественных опухолей.

Несмотря на это, специалисты не теряют оптимизма и называют трансплантацию стволовых клетокодним из наиболее перспективных подходов в терапии нейродегенеративных заболеваний. опубликовано . Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта .

Биологический нейрон состоит из тела диаметром от 3 до 100 мкм, содержащего ядро и отростки. Выделяют два вида отростков. Аксон обычно - длинный отросток, приспособленный для проведения возбуждения от тела нейрона. Дендриты - как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов).

Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи с 20-ю тысячами других нейронов. Кора головного мозга человека содержит десятки миллиардов нейронов.

Биологический нейрон является важнейшим элементом клеток нервной системы и строительным материалом мозга. Нейроны существуют в нескольких форма, в зависимости от их назначения и дислокации, но в целом они схожи по структуре.

Рис. 12.4 Схема нейрона

Каждый нейрон является устройством обработки информации, которое получает сигналы от других нейронов через специальную структуру ввода, состоящую из дендритов. Если совокупный входной сигнал превышает пороговый уровень, то клетка передает сигнал далее в аксон, а затем в структуру вывода сигнала, от которой он передается в другие нейроны. Сигналы передается с помощью электрических волн. (В течение жизни у человека число нейронов не увеличивается, но растет число связей между ними, как результат обучения).

Органы чувств человека состоят из большого числа нейронов, соединенных между собой множеством связей. Орган чувств включает в себя рецепторы и проводящие пути. В рецепторах формируются электрохимические сигналы, распространяющиеся со скоростью от 5 до 125 метров в секунду. Рецепторы кодируют различные виды сигналов в единый универсальный частотно-импульсный код.

Число нервных импульсов в единицу времени пропорционально интенсивности воздействия. Органы чувств имеют нижние и верхние пределы чувствительности. Реакция (Е) органов чувств человека на интенсивность (Р) раздражения можно приближенно представить законом Вебера - Фехнера:

Очевидно, если учесть при этом влияние шума, то можно прийти к формуле Шеннона, позволяющей оценить информационную способность такого органа чувств. Путем обучения и тренировки можно повысить разрешающую способность органов чувств. Кроме этого человек может различать сочетание частот и амплитуд , в такой степени, которая недоступна современным техническим устройствам. Но органы чувств функционируют в ограниченном диапазоне по частоте и амплитуде.

При переходе в возбужденное состояние в выходном отростке (аксоне) генерируется импульс возбуждения, распространяющийся по нему со скоростью от 1 до 100 м/с; в основе процесса распространения лежит изменение локальной проводимости мембраны аксона по отношению к ионам натрия и калия. Между нейронами нет прямых электрических связей. Перенос сигнала с аксона на входной отросток (дендрит) другого нейрона осуществляется химическим путем в специальной области – синапсе, где окончания двух нервных клеток подходят близко друг к другу. Некоторые из синапсов являются особыми, вырабатывающие сигналы обратной полярности для гашения сигналов возбуждения.

В настоящее время интенсивно изучаются и глобальные аспекты деятельности мозга – специализация его больших областей, функциональные связи между ними и т.п. В то же время мало известно, как же осуществляется обработка информации на промежуточном уровне, в участках нейронной сети, содержащей всего десятки тысяч нервных клеток.

Иногда мозг уподобляют колоссальной вычислительной машине, отличающейся от привычных компьютеров лишь существенно большим числом составляющих элементов. Считается, что каждый импульс возбуждения переносит единицу информации, а нейроны играют роль логических переключателей по аналогии с ЭВМ. Такая точка зрения ошибочна. Работа мозга основывается на совершенно иных принципах. В нем нет жесткой структуры связей между нейронами, которая была бы подобна электрической схеме ЭВМ. Надежность его отдельных элементов (нейронов) гораздо ниже, чем элементов, используемых для создания современных компьютеров. Разрушение даже таких участков, которые содержат довольно большое число нейронов, зачастую почти не влияет на эффективность обработки информации в этой области мозга. Часть нейронов отмирает при старении организма. Никакая вычислительная машина, построенная на традиционных принципах, не сможет работать при таких обширных повреждениях.

Современные ЭВМ выполняют операции последовательно, по одной операции на такт. Число извлекается из памяти , помещается в процессор , где над ним производится некоторое действие в соответствии с диктуемой программой инструкцией, и результат вновь заносится в память. Вообще говоря, при выполнении отдельной операции электрический сигнал должен пробежать по соединительным проводам определенное расстояние, что может ограничить быстродействие ЭВМ.

Например, если сигнал проходит расстояние в 30 см, то частота следования сигналов при этом не должна превышать 1 ГГц. Если операции выполняются последовательно, то предел быстродействия такой ЭВМ не превысит миллиарда операций в секунду. В действительности быстродействие, кроме того, ограничивается скоростью срабатывания отдельных элементов компьютера. Поэтому быстродействие современных ЭВМ уже довольно близко подошло к своему теоретическому пределу. Но этого быстродействия совершенно недостаточно, чтобы организовать управление сложными системами, решение задач «искусственного интеллекта» и др.

Если распространить приведенные рассуждения на человеческий мозг, то результаты будут абсурдными. Ведь скорость распространения сигналов по нервным волокнам в десятки и сотни миллионов раз меньше чем в ЭВМ. Если бы мозг работал, используя принцип современных ЭВМ, то теоретический предел его быстродействия составлял всего тысячи операций в секунду. Но этого явно недостаточно для объяснения существенно более высокой эффективности работы мозга.

Очевидно, деятельность мозга связана с параллельной обработкой информации. К настоящему времени организация параллельных вычислений уже используется в ЭВМ, например, с матричными процессорами, представляющими собой сеть из более простых процессоров, имеющих собственную память. Техника параллельного вычисления заключается в том, что элементарный процессор «знает» лишь о состоянии своего малого элемента среды. Основываясь на этой информации, каждый процессор вычисляет состояние своего элемента в следующий момент времени. При этом отсутствует ограничение быстродействия, связанное со скоростью распространения сигналов. Работа матричного процессора устойчива по отношению к локальным повреждениям.

Следующим этапом в развитие идеи параллельных вычислений явилось создание вычислительных сетей. Такое своеобразное «сообщество» компьютеров напоминает многоклеточный организм, который «живет своей жизнью». При этом функционирование вычислительной сети как сообщества компьютеров не зависит от того, как именно устроен каждый отдельный компьютер, какими процессами внутри него обеспечена обработка информации. Можно представить себе сеть, состоящую из очень большого числа примитивных компьютеров, способных выполнять всего несколько операций и хранить в своей памяти мгновенные значения нескольких величин.

С математической точки зрения подобные сети, состоящие из элементов с простым репертуаром реакций, принято рассматривать как клеточные автоматы . Мозг гораздо ближе по принципу работы и структуре к матричному процессору, чем к традиционной ЭВМ с последовательным выполнением операций. Однако существует фундаментальное различие между мозгом человека и любым параллельным компьютером. Дело в том, что нейронные сети мозга вообще не заняты никакими вычислениями. Абстрактное мышление (обращение с числами и математическими символами) вторично по отношению к фундаментальным механизмам работы мозга. Трудно себе представить, что когда, например, кошка настигает в прыжке птичку, ее мозг решает в считанные доли секунды системы нелинейных дифференциальных уравнений, описывающих траекторию прыжка и другие действия.

На эту тему можно привести следующее высказывание А. Эйнштейна: «Слова и язык, по-видимому, не играют никакой роли в моем механизме мышления. Физические сущности, которые в действительности, видимо, элементами мышления, - это определенные знаки и более или менее ясные образы, которые могут произвольно воспроизводиться и комбинироваться… Обычные слова приходиться подбирать лишь на второй стадии…».

Мозг работает как колоссальная «аналоговая» машина, где окружающий мир находит отражение в пространственно-временных структурах активности нейронов. Подобный механизм работы мозга мог естественно возникнуть в ходе биологической эволюции.

Для простейшего животного основная функция нервной системы состоит в том, чтобы преобразовать ощущения, вызываемые внешним миром, в определенную двигательную активность. На ранних стадиях эволюции связь между образом-ощущением и образом-движением является прямой, однозначной и наследственно закрепленной в исходной структуре соединений между нейронами. На более поздних стадиях эта связь усложняется, появляется способность к обучению. Образ-ощущение уже не связан жестко с планом действий. Вначале осуществляется его промежуточная обработка и сравнение с хранящимися в памяти картинами. Промежуточная обработка образов становится все более сложной по мере движения вверх по эволюционной лестнице. В конечном счете, после длительного развития, формируется процесс, называемый нами мышлением.

Для распознавания образов может быть использован принцип «клеточного автомата». Система обладает ассоциативной памятью, если при подаче на ее вход некоторой картинки она автоматически отбирает и подает на выход наиболее близкую к ней хранящуюся в памяти картину.

Искусственный интеллект, нейронные сети, машинное обучение - что на самом деле означают все эти нынче популярные понятия? Для большинства непосвященных людей, коим являюсь и я сам, они всегда казались чем-то фантастическим, но на самом деле суть их лежит на поверхности. У меня давно созревала идея написать простым языком об искусственных нейронных сетях. Узнать самому и рассказать другим, что представляет собой эта технология, как она работает, рассмотреть ее историю и перспективы. В этой статье я постарался не залезать в дебри, а просто и популярно рассказать об этом перспективном направление в мире высоких технологий.

Немного истории

Впервые понятие искусственных нейронных сетей (ИНС) возникло при попытке смоделировать процессы головного мозга. Первым серьезным прорывом в этой сфере можно считать создание модели нейронных сетей МакКаллока-Питтса в 1943 году. Учеными впервые была разработана модель искусственного нейрона. Ими также была предложена конструкция сети из этих элементов для выполнения логических операций. Но самое главное, учеными было доказано, что подобная сеть способна обучаться.

Следующим важным шагом стала разработка Дональдом Хеббом первого алгоритма вычисления ИНС в 1949 году, который стал основополагающем на несколько последующих десятилетий. В 1958 году Фрэнком Розенблаттом был разработан парцептрон - система, имитирующая процессы головного мозга. В свое время технология не имела аналогов и до сих пор является основополагающей в нейронных сетях. В 1986 году практически одновременно, независимо друг от друга американскими и советскими учеными был существенно доработан основополагающий метод обучения многослойного перцептрона . В 2007 году нейронные сети перенесли второе рождение. Британский информатик Джеффри Хинтоном впервые разработал алгоритм глубокого обучения многослойных нейронных сетей, который сейчас, например, используется для работы беспилотных автомобилей.

Коротко о главном

В общем смысле слова, нейронные сети - это математические модели, работающие по принципу сетей нервных клеток животного организма. ИНС могут быть реализованы как в программируемые, так и в аппаратные решения. Для простоты восприятия нейрон можно представить, как некую ячейку, у которой имеется множество входных отверстий и одно выходное. Каким образом многочисленные входящие сигналы формируются в выходящий, как раз и определяет алгоритм вычисления. На каждый вход нейрона подаются действенные значения, которые затем распространяются по межнейронным связям (синопсисам). У синапсов есть один параметр - вес, благодаря которому входная информация изменяется при переходе от одного нейрона к другому. Легче всего принцип работы нейросетей можно представить на примере смешения цветов. Синий, зеленый и красный нейрон имеют разные веса. Информация того нейрона, вес которого больше будет доминирующей в следующем нейроне.

Сама нейросеть представляет собой систему из множества таких нейронов (процессоров). По отдельности эти процессоры достаточно просты (намного проще, чем процессор персонального компьютера), но будучи соединенными в большую систему нейроны способны выполнять очень сложные задачи.

В зависимости от области применения нейросеть можно трактовать по-разному, Например, с точки зрения машинного обучения ИНС представляет собой метод распознавания образов. С математической точки зрения - это многопараметрическая задача. С точки зрения кибернетики - модель адаптивного управления робототехникой. Для искусственного интеллекта ИНС - это основополагающее составляющее для моделирования естественного интеллекта с помощью вычислительных алгоритмов.

Основным преимуществом нейросетей над обычными алгоритмами вычисления является их возможность обучения. В общем смысле слова обучение заключается в нахождении верных коэффициентов связи между нейронами, а также в обобщении данных и выявлении сложных зависимостей между входными и выходными сигналами. Фактически, удачное обучение нейросети означает, что система будет способна выявить верный результат на основании данных, отсутствующих в обучающей выборке.

Сегодняшнее положение

И какой бы многообещающей не была бы эта технология, пока что ИНС еще очень далеки от возможностей человеческого мозга и мышления. Тем не менее, уже сейчас нейросети применяются во многих сферах деятельности человека. Пока что они не способны принимать высокоинтеллектуальные решения, но в состоянии заменить человека там, где раньше он был необходим. Среди многочисленных областей применения ИНС можно отметить: создание самообучающихся систем производственных процессов, беспилотные транспортные средства, системы распознавания изображений, интеллектуальные охранные системы, робототехника, системы мониторинга качества, голосовые интерфейсы взаимодействия, системы аналитики и многое другое. Такое широкое распространение нейросетей помимо прочего обусловлено появлением различных способов ускорения обучения ИНС.

На сегодняшний день рынок нейронных сетей огромен - это миллиарды и миллиарды долларов. Как показывает практика, большинство технологий нейросетей по всему миру мало отличаются друг от друга. Однако применение нейросетей - это очень затратное занятие, которое в большинстве случаев могут позволить себе только крупные компании. Для разработки, обучения и тестирования нейронных сетей требуются большие вычислительные мощности, очевидно, что этого в достатке имеется у крупных игроков на рынке ИТ. Среди основных компаний, ведущих разработки в этой области можно отметить подразделение Google DeepMind, подразделение Microsoft Research, компании IBM, Facebook и Baidu.

Конечно, все это хорошо: нейросети развиваются, рынок растет, но пока что главная задача так и не решена. Человечеству не удалось создать технологию, хотя бы приближенную по возможностям к человеческому мозгу. Давайте рассмотрим основные различия между человеческим мозгом и искусственными нейросетями.

Почему нейросети еще далеки до человеческого мозга?

Самым главным отличием, которое в корне меняет принцип и эффективность работы системы - это разная передача сигналов в искусственных нейронных сетях и в биологической сети нейронов. Дело в том, что в ИНС нейроны передают значения, которые являются действительными значениями, то есть числами. В человеческом мозге осуществляется передача импульсов с фиксированной амплитудой, причем эти импульсы практически мгновенные. Отсюда вытекает целый ряд преимуществ человеческой сети нейронов.

Во-первых, линии связи в мозге намного эффективнее и экономичнее, чем в ИНС. Во-вторых, импульсная схема обеспечивает простоту реализации технологии: достаточно использование аналоговых схем вместо сложных вычислительных механизмов. В конечном счете, импульсные сети защищены от звуковых помех. Действенные числа подвержены влиянию шумов, в результате чего повышается вероятность возникновения ошибки.

Итог

Безусловно, в последнее десятилетие произошел настоящий бум развития нейронных сетей. В первую очередь это связано с тем, что процесс обучения ИНС стал намного быстрее и проще. Также стали активно разрабатываться так называемые «предобученные» нейросети, которые позволяют существенно ускорить процесс внедрения технологии. И если пока что рано говорить о том, смогут ли когда-то нейросети полностью воспроизвести возможности человеческого мозга, вероятность того, что в ближайшее десятилетие ИНС смогут заменить человека на четверти существующих профессий все больше становится похожим на правду.

Для тех, кто хочет знать больше

  • Большая нейронная война: что на самом деле затевает Google
  • Как когнитивные компьютеры могут изменить наше будущее

Нейронные связи головного мозга обуславливают сложное поведение. Нейроны — маленькие вычислительные машины, способные оказывать влияние, только объединившись в сети.

Контроль простейших элементов поведения (например, рефлексов) не требует большого количества нейронов, но даже рефлексы часто сопровождает осознание человеком срабатывания рефлекса. Сознательное же восприятие сенсорных стимулов (и все высшие функции нервной системы) зависит от огромного числа связей между нейронами.

Нейронные связи делают нас такими, какие мы есть. Их качество влияет на работу внутренних органов, на интеллектуальные способности и эмоциональную стабильность.

"Проводка"

Нейронные связи головного мозга — проводка нервной системы. Работа нервной системы основана на способности нейрона воспринимать, обрабатывать и передавать информацию другим клеткам.

Информация передается через Поведение человека и функционирование его организма полностью зависит от передачи и получения импульсов нейронами через отростки.

У нейрона два типа отростков: аксон и дендрит. Аксон у нейрона всегда один, именно по нему нейрон передает импульс другим клеткам. Получает же импульс через дендриты, которых может быть несколько.

К дендритам "подведено" множество (иногда десятки тысяч) аксонов других нейронов. Дендрит и аксон контактируют через синапс.

Нейрон и синапсы

Щель между дендритом и аксоном — синапс. Т.к. аксон "источник" импульса, дендрит "принимающий", а синаптическая щель — место взаимодействия: нейрон, от которого идет аксон, называют пресинаптическим; нейрон, от которого идет дендрит, — постсинаптическим.

Синапсы могут формироваться и между аксоном и телом нейрона, и между двумя аксонами или двумя дендритами. Многие синаптические связи образованы дендритным шипиком и аксоном. Шипики очень пластичны, обладают множеством форм, могут быстро исчезать и формироваться. Они чувствительны к химическим и физическим воздействиям (травмы, инфекционные заболевания).

В синапсах чаще всего информация передается посредством медиаторов (химических веществ). Молекулы медиатора высвобождаются на пресинаптической клетке, пересекают синаптическую щель и связываются с мембранными рецепторами постсинаптической клетки. Медиаторы могут передавать возбуждающий или тормозящий (ингибирующий) сигнал.

Нейронные связи головного мозга представляют собой соединение нейронов через синаптические связи. Синапсы — функциональная и структурная единица нервной системы. Количество синаптических связей — ключевой показатель для работы мозга.

Рецепторы

Рецепторы вспоминают каждый раз, когда говорят про наркотическую или алкогольную зависимость. Почему же человеку необходимо руководствоваться принципом умеренности?

Рецептор на постсинаптической мембране — белок, настроенный на молекулы медиатора. Когда человек искусственно (наркотиками, например) стимулирует выброс медиаторов в синаптическую щель, синапс пытается вернуть равновесие: снижает количество рецепторов или их чувствительность. Из-за этого естественные уровни концентрации медиаторов в синапсе перестают оказывать действие на нейронные структуры.

Например, курящие люди никотином изменяют восприимчивость рецепторов к ацетилхолину, происходит десенсибилизация (уменьшение чувствительности) рецепторов. Естественный уровень ацетилхолина оказывается недостаточным для рецепторов с пониженной чувствительность. Т.к. ацетилхолин задействован во многих процессах, в том числе, связанных с концентрацией внимания и ощущением комфорта, курящий не может получить полезные эффекты работы нервной системы без никотина.

Впрочем, чувствительность рецепторов постепенно восстанавливается. Хотя это может занимать долгое время, синапс приходит в норму, и человеку больше не требуются сторонние стимуляторы.

Развитие нейронных сетей

Долговременные изменения нейронных связей происходят при различных болезнях (психических и неврологических — шизофрения, аутизм, эпилепсия, болезнях Хантингтона, Альцгеймера и Паркинсона). Синаптические связи и внутренние свойства нейронов изменяются, что приводит к нарушению работы нервной системы.

За развитие синаптических связей отвечает активность нейронов. "Используй или потеряешь" — принцип, лежащий в основе мозга. Чем чаще "действуют" нейроны, тем больше между ними связей, чем реже, тем меньше связей. Когда нейрон теряет все свои связи, он погибает.

Когда средний уровень активности нейронов падает (например, вследствие травмы), нейроны строят новые контакты, с количеством синапсов растет активность нейронов. Верно и обратное: как только уровень активности становится больше привычного уровня, количество синаптических соединений уменьшается. Подобные формы гомеостаза часто встречаются в природе, например, при регуляции температуры тела и уровня сахара в крови.

М. Бутс M. Butz отметил:

Формирование новых синапсов обусловлено стремлением нейронов поддерживать заданный уровень электрической активности...

Генри Маркрам, который участвует в проекте по созданию нейронной симуляции мозга, подчеркивает перспективы развития отрасли для изучения нарушения, восстановления и развития нейронных связей. Группа исследователей уже оцифровала 31 тысячу нейронов крысы. Нейронные связи мозга крысы представлены в видео ниже.

Нейропластичность

Развитие нейронных связей в головном мозге сопряжено с созданием новых синапсов и модификацией существующих. Возможность модификаций обусловлена синаптической пластичностью — изменением "мощности" синапса в ответ на активацию рецепторов на постсинаптической клетке.

Человек может запоминать информацию и обучаться благодаря пластичности мозга. Нарушение нейронных связей головного мозга вследствие черепно-мозговых травм и нейродегенеративных заболеваний благодаря нейропластичности не становится фатальным.

Нейропластичность обусловлена необходимостью изменяться в ответ на новые условия жизни, но она может как решать проблемы человека, так и создавать их. Изменение мощности синапса, например, при курении — это тоже отражение От наркотиков и обсессивно-компульсивного расстройства так сложно избавиться именно из-за неадаптивного изменения синапсов в нейронных сетях.

На нейропластичность большое влияние оказывают нейротрофические факторы. Н. В. Гуляева подчеркивает, что различные нарушения нейронных связей происходят на фоне снижения уровней нейротрофинов. Нормализация уровня нейротрофинов приводит к восстановлению нейронных связей головного мозга.

Все эффективные лекарства, используемые для лечения болезней мозга, независимо от их структуры, если они эффективны, они тем или иным механизмом нормализуют локальные уровни нейротрофических факторов.

Оптимизация уровней нейротрофинов пока не может осуществляться путем прямой их доставки в мозг. Зато человек может опосредованно влиять на уровни нейротрофинов через физические и когнитивные нагрузки.

Физические нагрузки

Обзоры исследований показывают, что упражнения улучшают настроение и познавательные способности. Данные свидетельствуют о том, что эти эффекты обусловлены изменением уровня нейротрофического фактора (BDNF) и оздоровлением сердечно-сосудистой системы.

Высокие уровни BDNF были связаны с лучшими показателями пространственных способностей, эпизодической и Низкий уровень BDNF, особенно у пожилых людей, коррелировал с атрофией гиппокампа и нарушениями памяти, что может быть связано с когнитивными проблемами, возникающими при болезни Альцгеймера.

Изучая возможности по лечению и профилактике Альцгеймера, исследователи часто говорят о незаменимости физических упражнений для людей. Так, исследования показывают, что регулярная ходьба влияет на размер гиппокампа и улучшает память.

Физические нагрузки увеличивают скорость нейрогенеза. Появление новых нейронов — важное условие для переучивания (приобретения нового опыта и стирания старого).

Когнитивные нагрузки

Нейронные связи головного мозга развиваются, когда человек находится в обогащенной стимулами среде. Новый опыт — ключ к увеличению нейронных связей.

Новый опыт — это конфликт, когда проблема не решается теми средствами, которые уже есть у мозга. Поэтому ему приходится создавать новые связи, новые шаблоны поведения, что связано с увеличением плотности шипиков, количества дендритов и синапсов.

Обучение новым навыкам приводит к образованию новых шипиков и дестабилизации старых соединений шипиков с аксонами. Человек вырабатывает новые привычки, а старые исчезают. Некоторые исследования связывают когнитивные расстройства (СДВГ, аутизм, умственную отсталость) с отклонениями в развитии шипиков.

Шипики очень пластичны. Количество, форма и размер шипиков связаны с мотивацией, обучением и памятью.

Время, требующееся на изменения их формы и размера, измеряется буквально в часах. Но это значит также, что настолько же быстро новые соединения могут исчезать. Поэтому лучше всего отдавать предпочтение кратким, но частым когнитивным нагрузкам, чем длительным и редким.

Образ жизни

Диета может повышать когнитивные способности и защищать нейронные связи головного мозга от повреждений, содействовать их восстановлению после болезней и противодействовать последствиям старения. На здоровье мозга, по всей видимости, оказывают положительное влияние:

— омега-3 (рыба, семена льна, киви, орехи);

— куркумин (карри);

— флавоноиды (какао, зеленый чай, цитрусовые, темный шоколад);

— витамины группы В;

— витамин Е (авокадо, орехи, арахис, шпинат, пшеничная мука);

— холин (куриное мясо, телятина, яичные желтки).

Большинство перечисленных продуктов опосредованно влияют на нейротрофины. Позитивное влияние диеты усиливается при наличии физических упражнений. Кроме того, умеренное ограничение количества калорий в рационе стимулирует экспрессию нейротрофинов.

Для восстановления и развития нейронных связей полезно исключение насыщенных жиров и рафинированного сахара. Продукты с добавленными сахарами снижают уровни нейротрофинов, что негативно сказывается на нейропластичности. А высокое содержание насыщенных жиров в еде даже тормозит восстановление мозга после черепно-мозговых травм.

Среди негативных факторов, затрагивающих нейронные связи: курение и стресс. Курение и длительный стресс в последнее время ассоциируют с нейродегенеративными изменениями. Хотя непродолжительный стресс может быть катализатором нейропластичности.

Функционирование нейронных связей зависит и ото сна. Возможно, даже больше, чем от всех остальных перечисленных факторов. Потому что сам по себе сон — "это цена, которую мы платим за пластичность мозга" (Sleep is the price we pay for brain plasticity. Ch. Cirelli - Ч. Цирелли).

Резюме

Как улучшить нейронные связи головного мозга? Положительное влияние оказывают:

  • физические упражнения;
  • задачи и трудности;
  • полноценный сон;
  • сбалансированная диета.

Негативно воздействуют:

  • жирная пища и сахар;
  • курение;
  • длительный стресс.

Мозг чрезвычайно пластичен, но "лепить" из него что-то очень сложно. Он не любит тратить энергию на бесполезные вещи. Быстрее всего развитие новых связей происходит в ситуации конфликта, когда человек не способен решить задачу известными методами.