Что такое импульс и момент импульса. Закон сохранения момента импульса: формула, применение и особенности

Момент импульса в классической механике

Связь между импульсом и моментом

Определение

Момент импульса частицы относительно некоторого начала отсчёта определяется векторным произведением её радиус-вектора и импульса :

где - радиус-вектор частицы относительно выбранного неподвижного в данной системе отсчёта начала отсчёта, - импульс частицы.

Для нескольких частиц момент импульса определяется как (векторная) сумма таких членов:

где - радиус-вектор и импульс каждой частицы, входящей в систему, момент импульса которой определяется.

(В пределе количество частиц может быть бесконечным, например, в случае твердого тела с непрерывно распределенной массой или вообще распределенной системы это может быть записано как где - импульс бесконечно малого точечного элемента системы).

Из определения момента импульса следует его аддитивность : как, для системы частиц в частности, так и для системы, состоящей из нескольких подсистем, выполняется:

  • Замечание: в принципе момент импульса может быть вычислен относительно любого начала отсчета (получившиеся при этом разные значения связаны очевидным образом); однако чаще всего (для удобства и определенности) его вычисляют относительно центра масс или закрепленной точки вращения твердого тела итп).

Вычисление момента

Так как момент импульса определяется векторным произведением , он является псевдовектором , перпендикулярным обоим векторам и . Однако, в случаях вращения вокруг неизменной оси, бывает удобно рассматривать не момент импульса как псевдовектор, а его проекцию на ось вращения как скаляр , знак которого зависит от направления вращения. Если выбрана такая ось, проходящая через начало отсчёта, для вычисления проекции углового момента на неё можно указать ряд рецептов в соответствии с общими правилами нахождения векторного произведения двух векторов.

где - угол между и , определяемый так, чтобы поворот от к производился против часовой стрелки с точки зрения наблюдателя, находящегося на положительной части оси вращения. Направление поворота важно при вычислении, так как определяет знак искомой проекции.

Запишем в виде , где - составляющая радиус-вектора, параллельная вектору импульса, а - аналогично, перпендикулярная ему. является, по сути, расстоянием от оси вращения до вектора , которое обычно называют «плечом». Аналогично можно разделить вектор импульса на две составляющие: параллельную радиус-вектору и перпендикулярную ему . Теперь, используя линейность векторного произведения, а также свойство, согласно которому произведение параллельных векторов равно нулю, можно получить ещё два выражения для .

Сохранение углового момента

Симметрия в физике
Преобразование Соответствующая
инвариантность
Соответствующий
закон
сохранения
↕ Трансляции времени …энергии
⊠ , , и -симметрии …чётности
↔ Трансляции пространства Однородность
пространства
…импульса
↺ Вращения пространства Изотропность
пространства
…момента
импульса
⇆ Группа Лоренца Относительность
Лоренц-инвариантность
…4-импульса
~ Калибровочное преобразование Калибровочная инвариантность …заряда

Таким образом, требование замкнутости системы может быть ослаблено до требования равенства нулю главного (суммарного) момента внешних сил:

где - момент одной из сил, приложенных к системе частиц. (Но конечно, если внешние силы вообще отсутствуют, это требование также выполняется).

Математически закон сохранения момента импульса следует из изотропии пространства, то есть из инвариантности пространства по отношению к повороту на произвольный угол. При повороте на произвольный бесконечно малый угол , радиус-вектор частицы с номером изменятся на , а скорости - . Функция Лагранжа системы при таком повороте не изменится, вследствие изотропии пространства. Поэтому

С учетом , где - обобщенный импульс -той частицы, каждое слагаемое в сумме из последнего выражения можно переписать в виде

Теперь, пользуясь свойством смешанного произведения , совершим циклическую перестановку векторов, в результате чего получим, вынося общий множитель:

где, - момент импульса системы. Ввиду произвольности , из равенства следует .

На орбитах момент импульса распределяется между собственным вращением планеты и момента импульса её орбитального движения:

Момент импульса в электродинамике

При описании движения заряженной частицы в электромагнитном поле , канонический импульс не является инвариантным . Как следствие, канонический момент импульса тоже не инвариантен. Тогда берем реальный импульс, который также называется «кинетическим импульсом»:

где - электрический заряд , - скорость света , - векторный потенциал . Таким образом, гамильтониан (инвариантный) заряженной частицы массы в электромагнитном поле:

где - скалярный потенциал . Из этого потенциала следует закон Лоренца. Инвариантный момент импульса или «кинетический момент импульса» определяется:

Момент импульса в квантовой механике

Оператор момента

Вычисление момента импульса в нерелятивистской механике

Если имеется материальная точка массой , двигающаяся со скоростью и находящаяся в точке, описываемой радиус-вектором , то момент импульса вычисляется по формуле:

где - знак векторного произведения .

Чтобы рассчитать момент импульса тела , его надо разбить на бесконечно малые кусочки и векторно просуммировать их моменты как моменты импульса материальных точек, то есть взять интеграл :

Можно переписать это через плотность :

При решении задач на движение тел в пространстве часто используют формулы сохранения кинетической энергии и импульса. Оказывается, что аналогичные выражения существуют и для вращающихся тел. В данной статье подробно рассматривается закон сохранения момента импульса (формулы соответствующие также приводятся) и дается пример решения задачи.

Процесс вращения и момент импульса

Перед тем как перейти к рассмотрению формулы закона сохранения момента импульса, необходимо познакомиться с этим физическим понятием. Проще всего его можно ввести, если воспользоваться рисунком ниже.

На рисунке видно, что на конце вектора r¯, направленного от оси вращения и перпендикулярного ей, имеется некоторая материальная точка массой m. Эта точка движется по окружности названного радиуса с линейной скоростью v¯. Из физики известно, что произведение массы на линейную скорость называется импульсом (p¯). Теперь стоит ввести новую величину:

L¯ = r¯*m*v¯ = r¯*p¯.

Здесь векторная величина L¯ представляет собой момент импульса. Чтобы перейти к скалярной форме записи, необходимо знать модули соответствующих значений r¯ и p¯, а также угол θ между ними. Скалярная формула для L имеет вид:

L = r*m*v*sin(θ) = r*p*sin(θ).

На рисунке выше угол θ является прямым, поэтому можно просто записать:

L = r*m*v = r*p.

Из записанных выражений следует, что единицей измерения для L будут кг*м 2 /с.

Направление вектора момента импульса

Поскольку рассматриваемая величина является вектором (результат векторного произведения), то она будет иметь определенное направление. Из свойств произведения двух векторов следует, что их результат даст третий вектор, перпендикулярный плоскости, образованной первыми двумя. При этом направлен он будет таким образом, что если смотреть с его конца, то тело будет вращаться против часовой стрелки.

Результат применения этого правила показан на рисунке в предыдущем пункте. Из него видно, что L¯ направлен вверх, поскольку, если смотреть на тело сверху, его движение будет происходить против хода стрелки часов. При решении задач важно учитывать направление во время перехода к скалярной форме записи. Так, рассмотренный момент импульса считается положительным. Если бы тело вращалось по часовой стрелке, тогда в скалярной формуле перед L следовало бы поставить знак минуса (-L).

Аналогия с линейным импульсом

Рассматривая тему момента импульса и закона его сохранения, можно проделать один математический трюк - преобразовать выражение для L¯, помножив и поделив его на r 2. Тогда получится:

L¯ = r*m*v¯*r 2 /r 2 = m*r 2 *v¯/r.

В этом выражении отношение скорости к радиусу вращения называется угловой скоростью. Она обычно обозначается буквой греческого алфавита ω. Эта величина показывает, на сколько градусов (радиан) сделает поворот тело по орбите своего вращения за единицу времени. В свою очередь, произведение массы на квадрат радиуса - это тоже физическая величина, имеющая собственное название. Обозначают ее I и называют моментом инерции.

В итоге формула для момента импульса преобразуется в следующую форму записи:

L¯ = I *ω¯, где ω¯= v¯/r и I=m*r 2 .

Выражение демонстрирует, что направление момента импульса L¯ и угловой скорости ω¯ совпадают для системы, состоящей из вращающейся материальной точки. Особый интерес представляет величина I. Ниже она рассмотрена подробнее.

Момент инерции тела

Введенная величина I характеризует "сопротивляемость" тела любому изменению скорости его вращения. То есть она играет точно такую же роль, что и инерция тела при линейном перемещении объекта. По сути I для кругового движения с физической точки зрения означает то же самое, что и масса при линейном движении.

Как было показано, для материальной точки с массой m, вращающейся вокруг оси на расстоянии от нее r, момент инерции рассчитать просто (I = m*r 2), однако для любых других тел этот расчет будет несколько сложным, поскольку предполагает использование интеграла.

Для тела произвольной формы I можно определить при помощи следующего выражения:

I = ∫ m (r 2 *dm) = ∫ V (r 2 *ρ*dV), где ρ - плотность материала.

Выражения выше означают, что для вычисления момента инерции следует разбить все тело на бесконечно малые объемы dV, умножить их на квадрат расстояния до оси вращения и на плотность и просуммировать.

Для тел разной формы эта задача решена. Ниже приводятся данные для некоторых из них.

Материальная точка: I = m*r 2 .

Диск или цилиндр: I = 1/2*m*r 2 .

Стержень длиной l, закрепленный по центру: I = 1/12*m*l 2 .

Шар: I = 2/5*m*r 2 .

Момент инерции зависит от распределенной массы тела относительно оси вращения: чем дальше от оси будет находиться большая часть массы, тем больше будет I для системы.

Изменение момента импульса во времени

Рассматривая момент импульса и закон сохранения момента импульса в физике, можно решить простую проблему: определить, как и за счет чего он будет изменяться во времени. Для этого следует взять производную по dt:

dL¯/dt = d(r¯*m*v¯)/dt = m*v¯*dr¯/dt+r*m*dv¯/dt.

Первое слагаемое здесь равно нулю, поскольку dr¯/dt = v¯ и произведение векторов v¯*v¯ = 0 (sin(0) = 0). Второе же слагаемое может быть переписано следующим образом:

dL¯/dt =r*m*a¯, где ускорение a = dv¯/dt, откуда:

dL¯/dt =r*F¯=M¯.

Величина M¯, согласно определению, называется моментом силы. Она характеризует действие силы F¯ на материальную точку массой m, расположенную на расстоянии r от оси вращения.

Что показывает полученное выражение? Оно демонстрирует, что изменение момента импульса L¯ возможно только за счет действия момента силы M¯. Эта формула - закон сохранения момента импульса точки: если M¯=0, то dL¯/dt = 0 и L¯ является постоянной величиной.

Какие моменты сил могут изменить L¯ системы?

Существует два вида моментов сил M¯: внешние и внутренние. Первые связаны с силовым воздействием на элементы системы со стороны любых внешних сил, вторые же возникают за счет взаимодействия частей системы.

Согласно третьему закону Ньютона, любой силе действия соответствует направленная противоположно сила противодействия. Это означает, что суммарный любых взаимодействий внутри системы всегда равен нулю, то есть он не может повлиять на изменения момента импульса.

Величина L¯ может измениться только за счет внешних моментов сил.

Формула закона сохранения момента импульса

Формула для записи выражения сохранения величины L¯ в случае, если сумма внешних моментов сил равна нулю, имеет следующий вид:

I 1 *ω 1 = I 2 *ω 2 .

Любые изменения момента инерции системы пропорционально отражаются на изменении угловой скорости таким образом, что произведение I*ω не меняет своего значения.

Вид этого выражения аналогичен закону сохранения линейного импульса (роль массы играет I, а роль скорости - ω). Если развивать аналогию дальше, то, помимо этого выражения, можно записать еще одно, которое будет отражать сохранение кинетической энергии вращения:

E = I *(ω) 2 /2 = const.

Применение закона сохранения момента импульса находит себя в целом ряде процессов и явлений, которые кратко охарактеризованы ниже.

Примеры использования закона сохранения величины L¯

Следующие примеры закона сохранения момента импульса имеют важное значение для соответствующих сфер деятельности.

  • Любой вид спорта, где необходимо совершать прыжки с вращением. Например, балерина или спортсмен по фигурному катанию начинает исполнение пируэта с вращением, разведя широко руки и отодвинув ногу от центра тяжести своего тела. Затем он прижимает ногу ближе к опорной и руки ближе к телу, уменьшая тем самым момент инерции (большая часть точек тела расположена близко к оси вращения). По закону сохранения величины L, должна увеличиться его угловая скорость вращения ω.

  • Для изменения направления ориентации относительно Земли какого-либо искусственного спутника. Выполняется это так: спутник имеет специальный тяжелый "маховик", его приводит в движение электромотор. Общий момент импульса должен сохраняться, поэтому сам спутник начинает вращаться в противоположную сторону. Когда он примет нужную ориентацию в пространстве, маховик останавливают, и спутник также перестает вращаться.
  • Эволюция звезд. По мере того как звезда сжигает свое водородное топливо, силы гравитации начинают преобладать над давлением ее плазмы. Этот факт приводит к уменьшению радиуса звезды до небольших размеров и, как следствие, к сильному увеличению скорости вращения угловой. Например, установлено, что нейтронные звезды, имеющие диаметр несколько километров, вращаются с гигантскими скоростями, делая один оборот за доли миллисекунды.

Решение задачи на закон сохранения L¯

Учеными установлено, что через несколько миллиардов лет Солнце, исчерпав энергетические запасы, превратится в "белого карлика". Необходимо рассчитать, с какой скоростью оно будет вращаться вокруг оси.

Для начала необходимо выписать значения необходимых величин, которые можно взять из литературы. Итак, сейчас данная звезда имеет радиус 696 000 км и один оборот вокруг своей оси делает за 25,4 земных суток (значение для области экватора). Когда она подойдет к концу своего эволюционного пути, то сожмется до размеров 7000 км (порядка радиуса Земли).

Полагая, что Солнце - идеальный шар, можно воспользоваться формулой закона сохранения момента импульса для решения этой задачи. Нужно перевести сутки в секунды и километры в метры, получается:

L = I*ω = 2/5*m*r 1 2 *ω 1 = 2/5*m*r 2 2 *ω 2 .

Откуда следует:

ω 2 = (r 1 /r 2) 2 *ω 1 = (696000000/7000000) 2 *2*3,1416/(25,4*24*3600)= 0,0283 рад/с.

Здесь использовалась формула для угловой скорости (ω = 2*pi/T, где T - период вращения в секундах). При выполнении вычислений также было сделано предположение, что масса Солнца остается постоянной (это не верно, поскольку она будет уменьшаться. Тем не менее полученное значение ω 2 является нижней границей, то есть в действительности Солнце-карлик будет вращаться еще быстрее).

Поскольку полный оборот - это 2*pi радиан, тогда получится:

T 2 = 2*pi/ω 2 = 222 с.

То есть в конце своего жизненного цикла данная звезда будет делать один оборот вокруг своей оси быстрее, чем за 222 секунды.

а относительно неподвижной точки 0 называется физическая величина, равная векторному произведению

где - радиус-вектор проведенный из точки 0 в точку а,
- импульс материальной точки.

Направление вектора совпадает с направлением поступательного движения правого винта при его вращении отк. Модуль вектора момента импульса

где - угол между векторамии,- плечо вектораотносительно точки 0. Моментом импульса системы материальных точек относительно неподвижной точки 0 называется векторная сумма моментов импульсов всех материальных точек системы относительно той же точки 0

(22)

7. Момент импульса относительно неподвижной осиz.

Моментом импульса материальной точки а относительно неподвижной осиzназывается скалярная величина, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки 0 данной оси. Значение момента импульса не зависит от положения точки 0 на осиz.

Рассмотрим вращение твердого тела вокруг неподвижной оси z(О-О 1). Каждая точка твердого тела описывает горизонтальную окружность радиусасо скоростью. Скорость.и импульс
перпендикулярны этому радиусу, поэтомурадиус является плечом вектора
(угол=90 0). Момент импульса каждой точки твердого тела относительно осиzравен

(23)

и направлен по оси в сторону, определяемую правилом правого винта. Моменты импульса всех точек твердого тела будут сонаправлены, поэтому момент импульса твердого тела относительно оси есть сумма моментов импульсов отдельных частиц

то есть все точки твердого тела вращаются с одинаковой угловой скоростью, то wможно вынести за знак суммы

,

.
.

Момент импульса твердого тела относительно оси вращения равен произведению момента инерции тела относительно той же оси на угловую скорость.

Лекция 6. Уравнения динамики вращательного движения.

1. Закон сохранения момента импульса.

Продифференцируем момент импульса по времени

Величина есть скорость материальной точки, связанная с ее импульсом соотношением
. Поэтому первое слагаемое
равно нулю как векторное произведение коллинеарных векторови
, (
) Второе слагаемое можно преобразовать с помощью уравнения Ньютона

.

. (1)

Это уравнение моментов относительно неподвижной точки. Производная по времени момента импульса материальной точки (относительно неподвижной точки) равна моменту силы относительно этой же точки.

Уравнение моментов (1) можно обобщить на случай произвольной системы материальных точек. Пусть система состоит из nматериальных точек вращающихся вокруг центра 0.

…………………….

где
- момент внутренних сил,
- момент внешних сил.

По третьему закону Ньютона
= 0, так как внутренние силы входят попарно, сила с которой одно тело действует на другое равно и противоположно направлена сила с которой второе тело действует на первое. Полный момент этих сил равен нулю (см. рис.)

Исходя из этого уравнение примет вид

,

где
- момент импульса системы материальных точек.

=
- момент всех сил действующих на систему материальных точек.

(2)

Основной закон динамики вращательного движения для системы материальных точек. Производная по времени от момента импульса системы материальных точек относительно неподвижной точки равна геометрической сумме моментов всех внешних сил относительно этой точки .

Если момент всех внешних сил относительно неподвижной точки равен нулю, то момент импульса системы относительно той же неподвижной точки остается постоянным во времени.

и
или(3)

Выражение (3) – математическая запись закона сохранения момента импульса. Если мы продифференцируем по времени момент импульса относительно неподвижной оси, то получим уравнение моментов относительно неподвижной оси

(4)

Как было показано ранее, момент импульса твердого тела относительно оси вращения равен

.

Если момент инерции при вращении остается постоянным, то

,

где
- угловое ускорение. Тогда

(5).

Произведение момента инерции твердого тела относительно оси вращения на угловое ускорение равно моменту внешних сил относительно той же оси.

Уравнение (5) – основное уравнение динамики вращательного движения вокруг неподвижной оси. Оно напоминает уравнение Ньютона для поступательного движения.

Роль массы mиграет момент инерцииJ, роль скоростиv– угловая скоростьw, роль с илыF– момент силыM, роль импульсаp– момент импульсаL. Момент импульсаLчасто называют вращательным импульсом системы.

Если момент внешних сил M z относительно оси вращения равен нулю, то вращательный импульс сохраняется:

(6)

Продемонстрировать закон сохранения импульса можно с помощью скамьи Жуковского. Скамья Жуковского представляет собой стул, сиденье которого имеет форму диска. Диск может свободно вращаться вокруг вертикальной оси на шариковых подшипниках.

Человек, оттолкнувшись ногой от пола, приводит скамью во вращение. Вместе со скамьей будет вращаться и он сам. Во время вращения момент импульса системы скамья плюс человек будет оставаться постоянным, какие бы внутренние движения не совершались в системе.

Если человек разведет руки в стороны, то он увеличит момент инерции системы J, а потому угловая скорость вращенияwдолжна уменьшиться, чтобы оставался неизменным вращательный импульсL=Jw(см рис 1а и 1б)

Рис.1а. L=J 1 w 1 Рис.1бL=J 2 w 2

J 1 w 1 =J 2 w 2 (J 2 >J 1, w 2

Если человек, стоя на неподвижной скамье Жуковского, начинает делать конические движения над головой, скамья начинает вращаться в другую сторону (рис.2).

Общий момент импульса системы остается равным нулю.

Когда винт судна начинает вращаться, по закону сохранения момента импульса системы, корпус судна должен вращаться в противоположную сторону. В обычных условиях это не страшно, но в критических ситуациях (сильная боковая волна, легкое судно) может привести к опрокидыванию судна. Эта же ситуация всегда реализуется и для вертолетов. Чтобы этого не происходило, на хвосте устанавливается другой винт для гашения вращения.

В заключении сопоставим основные величины и уравнения определяющие вращение тела им его поступательное движение.

Поступательное движение

Вращательное движение

Масса m

Скорость v = dr / dt

Ускорение a = dv / dt

Сила F

Импульс p = mv

Основное уравнение динамики F = ma

F = dp / dt

Работа dA = F ds

Кинетическая энергия mv 2 /2

Момент инерции J

Угловая скорость w = / dt

Угловое ускорение ε = dw / dt

Момент силы M = Fr

Момент импульса L = Jw

Основное уравнение динамики M =

M = dL / dt

Работа вращения dA = Mdφ

Кинетическая энергия вращения Jw 2 /2

Перейдем к выводу закона сохранения, возникновение которого связано с изотропией пространства.

Эта изотропия означает, что механические свойства замкнутой системы не меняются при любом повороте системы как целого в пространстве. В соответствии с этим рассмотрим бесконечно малый поворот системы и потребуем, чтобы ее функция Лагранжа при этом не изменилась.

Введем вектор бесконечно малого поворота, абсолютная величина которого равна углу поворота, а направление совпадает с осью поворота (причем так, что направление поворота отвечает правилу винта по отношению к направлению ).

Найдем, прежде всего, чему равно при таком повороте приращение радиус-вектора, проведенного из общего начала координат (расположенного на оси вращения) к какой-либо из материальных точек поворачиваемой системы.

Линейное перемещение конца радиус-вектора связано с углом соотношением

(рис. 5). Направление же вектора перпендикулярно к плоскости, проходящей через Поэтому ясно, что

При повороте системы меняется направление не только радиус-векторов, но и скоростей всех частиц, причем все векторы преобразуются по одинаковому закону. Поэтому приращение скорости относительно неподвижной системы координат

Подставив эти выражения в условие неизменяемости функции Лагранжа при повороте

заменяем производные

или, производя циклическую перестановку множителей и вынося за знак суммы:

Ввиду произвольности отсюда следует, что

т. е. мы приходим к выводу, что при движении замкнутой системы сохраняется векторная величина

называемая моментом импульса (или просто моментом} системы.

Аддитивность этой величины очевидна, причем, как и у импульса, она не зависит от наличия или отсутствия взаимодействия между частицами.

Этим исчерпываются аддитивные интегралы движения. Таким образом, всякая замкнутая система имеет всего семь таких интегралов: энергия и по три компоненты векторов импульса и момента.

Поскольку в определение момента входят радиус-векторы частиц, то его значение, вообще говоря, зависит от выбора начала координат. Радиус-векторы и та одной и той же точки по отношению к началам координат, смещенным на вектор а, связаны соотношением а. Поэтому имеем:

Из этой формулы видно, что только в том случае, когда система как целое покоится (т. е. ее момент не зависит от выбора начала координат. На законе сохранения момента эта неопределенность его значения, разумеется, не сказывается, так как у замкнутой системы импульс тоже сохраняется.

Выведем также формулу, связывающую значения момента импульса в двух различных инерциальных системах отсчета К и К", из которых вторая движется относительно первой со скоростью V. Будем считать, что начала координат в системах К и К в данный момент времени совпадают. Тогда радиус-векторы частиц в обеих системах одинаковы, скорости же связаны посредством . Поэтому имеем:

Первая сумма в правой стороне равенства есть момент М в системе введя во вторую сумму радиус-вектор центра инерции согласно (8,3), получаем:

Эта формула определяет закон преобразования момента импульса при переходе от одной системы отсчета к другой, подобно тому, как для импульса и энергии аналогичные законы даются формулами (8,1) и (8,5).

Если система отсчета К есть та, в которой данная механическая система покоится как целое, то V есть скорость центра инерции последней, а - ее полный импульс Р (относительно К).

Другими словами, момент импульса М механической системы складывается из ее «собственного момента» относительно системы отсчета, в которой она покоится, и момента , связанного с ее движением как целого.

Хотя закон сохранения всех трех компонент момента (относительно произвольного начала координат) имеет место только для замкнутой системы, в более ограниченном виде этот закон может иметь место и для систем, находящихся во внешнем поле. Из приведенного выше вывода очевидно, что всегда сохраняется проекция момента на такую ось, относительно которой данное поле симметрично, и потому механические свойства системы не меняются при любом повороте вокруг этой оси; при этом, конечно, момент должен быть определен относительно какой-нибудь точки (начала координат), лежащей на этой же оси.

Наиболее важным случаем такого рода является поле с центральной симметрией, т. е. поле, в котором потенциальная энергия зависит только от расстояния до некоторой определенной точки (центра) в пространстве. Очевидно, что при движении в таком поле сохраняется проекция момента на любую ось, проходящую через центр. Другими словами, сохраняется вектор М момента, но определенного не относительно произвольной точки пространства, а относительно центра поля.

Другой пример: однородное поле вдоль оси z, в котором сохраняется проекция момента, причем начало координат может быть выбрано произвольным образом.

Отметим, что проекция момента на какую-либо ось (назовем ее ) может быть найдена дифференцированием функции Лагранжа по формуле

где координата есть угол поворота вокруг оси z. Это ясно уже из характера изложенного выше вывода закона сохранения момента, но в том же можно убедиться и прямым вычислением. В цилиндрических координатах имеем (подставляя

С другой стороны, функция Лагранжа в этих переменных имеет вид

и ее подстановка в (9,7) приводит к тому же выражению (9,8).

Задачи

1. Найти выражения для декартовых компонент и абсолютной величины момента импульса частицы в цилиндрических координатах .

Момент импульса

Определение

Моментом импульса относительно неподвижной оси $z$ называется скалярная величина $L_{z} $, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки 0 данной оси.

Значение момента импульса $L_{z} $ не зависит от положения точки 0 на оси $z$. При вращении абсолютно твердого тела вокруг неподвижной оси каждая отдельная точка тела движется по окружности постоянного радиуса $r_{i} $ с некоторой скоростью $v_{i} $. Скорость $v_{i} $ и импульс $m_{i} v_{i} $ перпендикулярны этому радиусу, т.е. радиус является плечом вектора $m_{i} v_{i} $. Поэтому можно записать, что момент импульса отдельной точки относительно оси $z$ равен:

Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных его точек:

Учитывая связь между линейно и угловой скоростями ($v_{i} =\omega r_{i} $), получим следующее выражение для момента импульса тела относительно неподвижной оси:

$L_{z} =\sum _{i=1}^{n}m_{i} r_{i}^{2} \omega =\omega \sum \limits _{i=1}^{n}m_{i} r_{i}^{2} =J_{z} \omega $, (1)

т.е. момент импульса твердого тела относительно оси равен произведению момента инерции тела относительно той же оси на угловую скорость. Продифференцировав выражение (1) по времени, получим:

$\frac{dL_{z} }{dt} =J_{z} \frac{d\omega }{dt} =M_{z} $ (2)

Это еще одна форма уравнения динамики вращательного движения твердого тела относительно неподвижной оси: скорость изменения момента импульса тела относительно неподвижной оси вращения равна результирующему моменту относительно этой оси всех внешних сил, действующих на тело.

Закон сохранения импульса

Закон сохранения момента импульса вытекает из основного уравнения динамики вращательного движения тела, закрепленного в неподвижной точке, и состоит в следующем: если результирующий момент внешних сил относительно неподвижной точки тождественно равен нулю, то момент импульса тела относительно этой точки с течением времени не изменяется.

Действительно, если:

$M=0$, то $\frac{dL}{dt} =0$,

откуда: $\overline{L}=const$. (3)

Другими словами, момент импульса замкнутой системы с течением времени не изменяется.

Из основного закона динамики тела, вращающегося вокруг неподвижной оси $z$ (уравнение 2), следует закон сохранения момента импульса тела относительно оси: если момент внешних сил относительно неподвижной оси вращения тела тождественно равен нулю, то момент импульса тела относительно этой оси не изменяется в процессе движения, т.е. если $M_{z} =0$, то $\frac{dL_{z} }{dt} =0$, откуда $\overline{L}_{z} =const,$ или $J_{z} \omega =const$.(4)

Закон сохранения момента импульса является фундаментальным законом природы. Справедливость этого закона обусловливается свойством симметрии пространства -- его изотропностью, т.е. с инвариантностью физических законов относительно выбора направления осей координат системы отсчета.

Справедливы следующие выражения:

  • Момент инерции тела относительно оси вращения -- это физическая величина, равная сумме произведений масс n материальных точек тела на квадраты их расстояний до рассматриваемой оси:
  • \
  • Момент инерции тела $J_{z} $ относительно любой оси вращения равен моменту его инерции $J_{c} $относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы m тела на квадрат расстояния а между осями: $J_{z} =J_{c} +ma^{2} $;
  • При вращении абсолютно твердого тела вокруг неподвижной оси $z$ его кинетическая энергия равна половине произведения момента инерции относительно оси вращения на квадрат угловой скорости:
  • \
  • Из сравнения формул $E_{k_{2@} } =\frac{J_{z} \omega ^{2} }{2} $и $E_{k} =\frac{mv^{2} }{2} $ следует, что момент инерции -- мера инертности тела при вращательном движении;
  • Уравнение динамики вращательного движения твердого тела относительно неподвижной оси z (аналог второго закона Ньютона) имеет вид: $M_{z} =J_{z} \varepsilon =\frac{dL_{z} }{dt} $.

Пример

Груз массой 0,8 кг подвешен на тонкой невесомой нити, на высоте 3 м над полом. Нить намотана на сплошной однородный цилиндрический вал радиусом 30 см с моментом инерции 0,15 кг*м2. Вращаясь, вал опускает груз на пол. Определить: время опускания груза до пола, силу натяжения нити, кинетическую энергию груза в момент касания грузом пола.

$r$= 15 см=0,15м

$J_{x} $= 0,18 кг*м2

Найти: $t,N,E_{k} $-?

Отсюда, сила натяжения нити: $N=\frac{J_{x} \varepsilon }{r} =\frac{0,18\cdot 4}{0,15} =4,8H$.

Кинетическая энергия груза в момент удара об пол:

Ответ: $t=3,2A$, $N=4,8H$, $E_{k} =0,9Дж.$