Что показывает мат ожидание. Математическое ожидание непрерывной случайной величины

Характеристики ДСВ и их свойства. Математическое ожидание, дисперсия, СКО

Закон распределения полностью характеризует случайную величину. Однако, когда невозможно найти закон распределения, или этого не требуется, можно ограничиться нахождением значений, называемых числовыми характеристиками случайной величины. Эти величины определяют некоторое среднее значение, вокруг которого группируются значения случайной величины, и степень их разбросанности вокруг этого среднего значения.

Математическим ожиданием дискретной случайной величины называется сумма произведений всех возможных значений случайной величины на их вероятности.

Математическое ожидание существует, если ряд, стоящий в правой части равенства, сходится абсолютно.

С точки зрения вероятности можно сказать, что математическое ожидание приближенно равно среднему арифметическому наблюдаемых значений случайной величины.

Пример. Известен закон распределения дискретной случайной величины. Найти математическое ожидание.

X
p 0.2 0.3 0.1 0.4

Решение:

9.2 Свойства математического ожидания

1. Математическое ожидание постоянной величины равно самой постоянной.

2. Постоянный множитель можно выносить за знак математического ожидания.

3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

Это свойство справедливо для произвольного числа случайных величин.

4. Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых.

Это свойство также справедливо для произвольного числа случайных величин.

Пусть производится n независимых испытаний, вероятность появления события А в которых равна р.

Теорема. Математическое ожидание М(Х) числа появления события А в n независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании.

Пример. Найти математическое ожидание случайной величины Z, если известны математические ожидания X и Y: M(Х)=3, M(Y)=2, Z=2X+3Y.

Решение:

9.3 Дисперсия дискретной случайной величины

Однако, математическое ожидание не может полностью характеризовать случайный процесс. Кроме математического ожидания надо ввести величину, которая характеризует отклонение значений случайной величины от математического ожидания.

Это отклонение равно разности между случайной величиной и ее математическим ожиданием. При этом математическое ожидание отклонения равно нулю. Это объясняется тем, что одни возможные отклонения положительны, другие отрицательны, и в результате их взаимного погашения получается ноль.



Дисперсией (рассеиванием) дискретной случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания.

На практике подобный способ вычисления дисперсии неудобен, т.к. приводит при большом количестве значений случайной величины к громоздким вычислениям.

Поэтому применяется другой способ.

Теорема. Дисперсия равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания .

Доказательство. С учетом того, что математическое ожидание М(Х) и квадрат математического ожидания М 2 (Х) – величины постоянные, можно записать:

Пример. Найти дисперсию дискретной случайной величины заданной законом распределения.

Х
Х 2
р 0.2 0.3 0.1 0.4

Решение: .

9.4 Свойства дисперсии

1. Дисперсия постоянной величины равна нулю. .

2. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат. .

3. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин. .

4. Дисперсия разности двух независимых случайных величин равна сумме дисперсий этих величин. .

Теорема. Дисперсия числа появления события А в п независимых испытаний, в каждом из которых вероятность р появления события постоянна, равна произведению числа испытаний на вероятности появления и непоявления события в каждом испытании.

9.5 Среднее квадратическое отклонение дискретной случайной величины

Средним квадратическим отклонением случайной величины Х называется квадратный корень из дисперсии.

Теорема. Среднее квадратичное отклонение суммы конечного числа взаимно независимых случайных величин равно квадратному корню из суммы квадратов средних квадратических отклонений этих величин.

Математическое ожидание произведения двух случайных величин равно произведению их математических ожиданий плюс корреляционный момент:

Доказательство. Будем исходить из определения корреляционного момента:

Преобразуем это выражение, пользуясь свойствами математического ожидания:

что, очевидно, равносильно формуле (10.2.17).

Если случайные величины некоррелированны , то формула (10.2.17) принимает вид:

т. е. математическое ожидание произведения двух некоррелированных случайных величин равно произведению их математических ожиданий.

Это положение известно под названием теоремы умножения математических ожиданий.

Формула (10.2.17) представляет собой не что иное, как выражение второго смешанного центрального момента системы через второй смешанный начальный момент и математические ожидания:

. (10.2.19)

Это выражение часто применяется на практике при вычислении корреляционного момента аналогично тому, как для одной случайной величины дисперсия часто вычисляется через второй начальный момент иматематическое ожидание.

Теорема умножения математических ожиданий обобщается и на произвольное число сомножителей, только в этом случае для ее применения недостаточно того, чтобы величины были некоррелированны, а требуется, чтобы обращались в нуль и некоторые высшие смешанные моменты, число которых зависит от числа членов в произведении. Эти условия заведомо выполнены при независимости случайных величин, входящих в произведение. В этом случае

, (10.2.20)

т. е. математическое ожидание произведения независимых случайных величин равно произведению ихматематических ожиданий.

Это положение легко доказывается методом полной индукции.

Дисперсия произведения независимых случайных величин

Докажем, что для независимых величин

Доказательство. Обозначим . По определению дисперсии

Так как величины независимы, и

При независимых величины тоже независимы; следовательно,



,

Но есть не что иное, как второй начальный момент величины , и, следовательно, выражается через дисперсию:

;

аналогично

.

Подставляя эти выражения в формулу (10.2.22) и приводя подобные члены, приходим к формуле (10.2.21).

В случае, когда перемножаются центрированные случайные величины (величины с математическими ожиданиями, равными нулю), формула (10.2.21) принимает вид:

, (10.2.23)

т. е. дисперсия произведения независимых центрированных случайных величин равна произведению их дисперсий.

Высшие моменты суммы случайных величин

В некоторых случаях приходится вычислять высшие моменты суммы независимых случайных величин. Докажем некоторые относящиеся сюда соотношения.

1) Если величины независимы, то

§ 4. ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН.

В теории вероятности и во многих ее приложениях большое значение имеют различные числовые характеристики случайных величин. Основными из них являются математическое ожидание и дисперсия.

1. Математическое ожидание случайной величины и его свойства.

Рассмотрим сначала следующий пример. Пусть на завод поступила партия, состоящая из N подшипников. При этом:

m 1 х 1 ,
m 2 - число подшипников с внешним диаметром х 2 ,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
m n - число подшипников с внешним диаметром х n ,

Здесь m 1 +m 2 +...+m n =N . Найдем среднее арифметическое значение x ср внешнего диаметра подшипника. Очевидно,
Внешний диаметр вынутого наудачу подшипника можно рассматривать как случайную величину , принимающую значения х 1 , х 2 , ..., х n , c соответствующими вероятностями p 1 =m 1 /N , p 2 =m 2 /N , ..., p n =m n /N , так как вероятность p i появления подшипника с внешним диаметром x i равна m i /N . Таким образом, среднее арифметическое значение x ср внешнего диаметра подшипника можно определить с помощью соотношения
Пусть - дискретная случайная величина с заданным законом распределения вероятностей

Значения х 1 х 2 . . . х n
Вероятности p 1 p 2 . . . p n

Математическим ожиданием дискретной случайной величины называется сумма парных произведений всех возможных значений случайной величины на соответствующие им вероятности, т.е. *
При этом предпологается, что несобственный интеграл, стоящий в правой части равенства (40) существует.

Рассмотрим свойства математического ожидания. При этом ограничимся доказательством только первых двух свойств, которое проведем для дискретных случайных величин.

1°. Математическое ожидание постоянной С равно этой постоянной .
Доказательство. Постоянную C можно рассматривать как случайную величину , которая может принимать только одно значение C c вероятностью равной единице. Поэтому

2°. Постоянный множитель можно выносить за знак математического ожидания , т.е.
Доказательство. Используя соотношение (39), имеем

3°. Математическое ожидание суммы нескольких случайных величин равно сумме математических ожиданий этих величин :

Определение 1. Математическое ожидание - это число, характеризующее центр распределения.

Для дискретной случайной величины математическое ожидание вычисляется как сумма произведений значений случайной величины на соответствующие вероятности, т.е.

Если число значений случайной величины конечно.

Если число значений случайной величины бесконечно, то М(х) существует, если сходится данный ряд.

Для непрерывной случайной величины математическое ожидание вычисляется через определенный интеграл от случайной величины х , умноженной на элемент вероятности dP = f(x)dx , т.е.

если значения случайной величины сосредоточены в [а; b].

если значения случайной величины занимают всю числовую ось. В этом случае M(x) существует, если сходится несобственный интеграл.

Математическое ожидание называют также средним значением случайной величины. Оно имеет те же самые единицы измерения, что и случайная величина.

Определение 2. Дисперсия - это число, характеризующее отклонение случайной величины от центра распределения в квадратных единицах измерения случайной величины.

Дисперсия для любой случайной величины определяется как математическое ожидание квадрата отклонения случайной величины от математического ожидания, т.е.

D(x) = М (х – М (х)) 2

Эта формула имеет вид:

Т.к. если случайная величина дискретная.

Если случайная величина непрерывная, то

Дисперсию можно также вычислить как разность математического ожидания квадрата случайной величины и квадрата математического ожидания случайной величины, т.е. по следующей формуле:

D(x) = М (х 2) – М 2 (х),

где , если случайная величина дискретная.

Если непрерывная.

Определение 3. Средним квадратическим отклонением называется число равное арифметическому значению корня квадратного из дисперсии.

Среднее квадратическое отклонение имеет те же самые единицы измерения, что и случайная величина.

Пример №1. Найти М(х), D(x), σ(x) , дискретной случайной величины, если


х i
p i 0.3 0.1 0.3 0.2 0.1

Решение.


Найдем дисперсию:

D(x)=(0-2,7) 2 0,3+(1-2,7) 2 0,1+(3-2,7) 2 0,3+(5-2,7) 2 0,2+(7-2,7) 2 0,1=5,41

или D(x)=M(x 2)-M 2 (x);

D(x) = 12,7-(2,7) 2 = 5,41

Пример №2. Найти M(х), D(x), σ(x) непрерывной случайной величины, если

0; если х<0

f(x)=
; если 0≤x<3

0; если х≥3


Решение. Найдем математическое ожидание:


Найдем дисперсию по формуле:

Найдем дисперсию по формуле: D(x) = М(х 2) - М 2 (х)




D(x)= 4,5-(2) 2 =4,5-4 = 0,5

Найдем среднее квадратическое отклонение:

Замечание. Числовые характеристики M(x) и D(x) имеют следующие свойства:


2 М(к х) = кМ(х)

3 М(х ± у) = М(х) ± М(у)
4. М(х ± с) = М(х) ± с

5 М(ху) = М(х)М(у), если х и у - независимые случайные величины


2. D(kx) = k 2 D(x)

3. D(x ± у) = D(x) ± D(y),если х и у - независимые случайные величины.

Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности.

Пусть случайная величина может принимать только значения вероятности которых соответственно равны Тогда математическое ожидание случайной величины определяется равенством

Если дискретная случайная величина принимает счетное множество возможных значений, то

Причем математическое ожидание существует, если ряд в правой части равенства сходится абсолютно.

Замечание. Из определения следует, что математическое ожидание дискретной случайной величины есть неслучайная (постоянная) величина.

Определение математического ожидания в общем случае

Определим математическое ожидание случайной величины, распределение которой не обязательно дискретно. Начнем со случая неотрицательных случайных величин. Идея будет заключаться в том, чтобы аппроксимировать такие случайные величины с помощью дискретных, для которых математическое ожидание уже определено, а математическое ожидание положить равным пределу математических ожиданий приближающих ее дискретных случайных величин. Кстати, это очень полезная общая идея, состоящая в том, что некоторая характеристика сначала определяется для простых объектов, а затем для более сложных объектов она определяется с помощью аппроксимации их более простыми.

Лемма 1. Пусть есть произвольная неотрицательная случайная величина. Тогда существует последовательность дискретных случайных величин, таких, что


Доказательство. Разобьем полуось на равные отрезки длины и определим

Тогда свойства 1 и 2 легко следуют из определения случайной величины, и

Лемма 2. Пусть -неотрицательная случайная величина и и две последовательности дискретных случайных величин, обладающих свойствами 1-3 из леммы 1. Тогда

Доказательство. Отметим, что для неотрицательных случайных величин мы допускаем

В силу свойства 3 легко видеть, что существует последовательность положительных чисел, такая что

Отсюда следует, что

Используя свойства математических ожиданий для дискретных случайных величин, получаем

Переходя к пределу при получаем утверждение леммы 2.

Определение 1. Пусть - неотрицательная случайная величина, -последовательность дискретных случайных величин, обладающих свойствами 1-3 из леммы 1. Математическим ожиданием случайной величины называется число

Лемма 2 гарантирует, что не зависит от выбора аппроксимирующей последовательности.

Пусть теперь - произвольная случайная величина. Определим

Из определения и легко следует, что

Определение 2. Математическим ожиданием произвольной случайной величины называется число

Если хотя бы одно из чисел в правой части этого равенства конечно.

Свойства математического ожидания

Свойство 1. Математическое ожидание постоянной величины равно самой постоянной:

Доказательство. Будем рассматривать постоянную как дискретную случайную величину, которая имеет одно возможное значение и принимает его с вероятностью следовательно,

Замечание 1. Определим произведение постоянной величины на дискретную случайную величину как дискретную случайную возможные значения которой равны произведениям постоянной на возможные значения; вероятности возможных значений равны вероятностям соответствующих возможных значений Например, если вероятность возможного значения равна то вероятность того, что величина примет значение также равна

Свойство 2. Постоянный множитель можно выносить за знак математического ожидания:

Доказательство. Пусть случайная величина задана законом распределения вероятностей:

Учитывая замечание 1, напишем закон распределения случайной величины

Замечание 2. Прежде, чем перейти к следующему свойству, укажем, что две случайные величины называют независимыми, если закон распределения одной из них не зависит от того, какие возможные значения приняла другая величина. В противном случае случайные величины зависимы. Несколько случайных величин называют взаимно независимыми, если законы распределения любого числа их них не зависят от того, какие возможные значения приняли остальные величины.

Замечание 3. Определим произведение независимых случайных величин и как случайную величину возможные значения которой равны произведениям каждого возможного значения на каждое возможное значение вероятности возможных значений произведения равны произведениям вероятностей возможных значений сомножителей. Например, если вероятность возможного значения равна, вероятность возможного значения равна то вероятность возможного значения равна

Свойство 3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

Доказательство. Пусть независимые случайные величины и заданы своими законами распределения вероятностей:

Составим все значения, которые может принимать случайная величина Для этого перемножим все возможные значения на каждое возможное значение; в итоге получим и учитывая замечание 3, напишем закон распределения предполагая для простоты, что все возможные значения произведения различны (если это не так, то доказательство проводится аналогично):

Математическое ожидание равно сумме произведений всех возможных значений на их вероятности:

Следствие. Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению их математических ожиданий.

Свойство 4. Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых:

Доказательство. Пусть случайные величины и заданы следующими законами распределения:

Составим все возможные значения величины Для этого к каждому возможному значению прибавим каждое возможное значение; получим Предположим для простоты, что эти возможные значения различны (если это не так, то доказательство проводится аналогично), и обозначим их вероятности соответственно через и

Математическое ожидание величины равно сумме произведений возможных значений на их вероятности:

Докажем, что Событие, состоящее в том, что примет значение (вероятность этого события равна), влечет за собой событие, которое состоит в том, что примет значение или (вероятность этого события по теореме сложения равна), и обратно. Отсюда и следует, что Аналогично доказываются равенства

Подставляя правые части этих равенств в соотношение (*), получим

или окончательно

Дисперсия и среднее квадратическое отклонение

На практике часто требуется оценить рассеяние возможных значений случайной величины вокруг ее среднего значения. Например, в артиллерии важно знать, насколько кучно лягут снаряды вблизи цели, которая должна быть поражена.

На первый взгляд может показаться, что для оценки рассеяния проще всего вычислить все возможные значения отклонения случайной величины и затем найти их среднее значение. Однако такой путь ничего не даст, так как среднее значение отклонения, т.е. для любой случайной величины равно нулю. Это свойство объясняется тем, что одни возможные отклонения положительны, а другие - отрицательны; в результате их взаимного погашения среднее значение отклонения равно нулю. Эти соображения говорят о целесообразности заменить возможные отклонения их абсолютными значениями или их квадратами. Так и поступают на деле. Правда, в случае, когда возможные отклонения заменяют их абсолютными значениями, приходится оперировать с абсолютными величинами, что приводит иногда к серьезным затруднениям. Поэтому чаще всего идут по другому пути, т.е. вычисляют среднее значение квадрата отклонения, которое и называется дисперсией.